
On one-dimensional perfect formal group laws

Jan Kohlhaase

Abstract. Let p be a prime number and let R denote a commutative unital
ring which is perfect of characteristic p. We show that every one-dimensional
commutative perfect formal group law over R is an ordinary formal group
law.
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Notation and conventions. Let p be a prime number. By N we denote
the set of non-negative integers and by N[ 1

p
] the set of rational numbers of

the form ipn for some i ∈ N and n ∈ Z. Let Qp denote the field of p-adic
numbers and Zp its ring of integers. The p-adic valuation vp on Qp will
be normalized through vp(p) = 1. Unless stated otherwise, all rings will
be assumed commutative and unital. If S is an integral domain we denote
by Frac(S) its field of fractions. We say that a ring S has characteristic
p if pS = 0. In this case, the endomorphism φ = (s ↦ sp) of S is called
its Frobenius. A ring S of characteristic p is called perfect if its Frobenius
endomorphism is bijective. Throughout this article we fix a non-zero perfect
ring R of characteristic p and denote by AlgR the category of R-algebras.
By an adic ring we mean a separated and complete topological ring S whose
topology coincides with the I-adic topology for some ideal I ⊆ S. Any such
ideal is called an ideal of definition. If R is an adic ring we denote by AlgadR
the category of adic R-algebras.

1 Perfect formal power series

Endow the perfect ring R with the discrete topology. Given indeterminates
X = (X1, . . . ,Xd) we denote by RJXK = RJX1, . . . ,XdK the corresponding
formal power series ring with coefficients in R endowed with the (X)-adic
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topology. Denote by limÐ→φRJXK the coperfection of RJXK, i.e. the colimit of

the countable system of ring homomorphisms

RJXK
φ
→ RJXK

φ
→ RJXK

φ
→ . . . .

The initial term allows us to view RJXK as a subring of limÐ→φRJXK. We

denote by

RJX1/p∞K = RJX1/p∞
1 , . . . ,X

1/p∞
d K

the (X)-adic completion of limÐ→φRJXK endowed with the (X)-adic topology.
It is called the ring of perfect formal power series with coefficients in R. In
more concrete terms, given α = (α1, . . . , αd) ∈ N[ 1p]

d set ∣α∣ = α1 + . . . + αd.
Consider the R-module S of formal expressions of the form

(1) f(X) = ∑
α∈N[ 1

p
]
d

cαX
α

with cα ∈ R such that for any n ∈ N the set {α ∈ N[ 1
p
]d ∣ cα ≠ 0 and ∣α∣ ≤ n}

is finite. Addition and scalar multiplication are defined coefficientwise. By
the above finiteness condition the multiplication

( ∑
α∈N[ 1

p
]
d

cαX
α) ⋅ ( ∑

β∈N[ 1
p
]
d

dβX
β) = ∑

γ∈N[ 1
p
]
d

( ∑
α+β=γ

cαdβ)Xγ

of two elements of S is well-defined and makes S into a ring of characteristic
p with unit element 1 =X0. It contains RJXK as a subring by identifying Xi

with Xei . Here ei = (0, . . . ,0,1,0, . . . ,0) with 1 in position i. We then have
Xα = Xα1

1 ⋅ . . . ⋅X
αd

d in S for all α = (α1, . . . , αd) ∈ N[ 1p]
d. The Frobenius of

S is given by
φ( ∑

α∈N[ 1
p
]
d

cαX
α) = ∑

α∈N[ 1
p
]
d

φ(cα)Xpα

whence S is perfect. One checks directly that S is (X)-adically separated
and complete and that the induced ring homomorphism RJX1/p∞K → S is
an isomorphism. In fact, limÐ→φRJXK maps isomorphically onto the dense

subring

⋃
n∈N

RJX1/pn

1 , . . . ,X
1/pn

d K = ⋃
n∈N

φ−n(RJXK)

consisting of all elements of the form ∑α∈ 1
pn

Nd cαX
α for some n ∈ N.

If f(X) is a perfect formal power series as in (1) and if n ∈ Z then we let
f (p

n) denote the perfect formal power series obtained by applying φn to the
coefficients of f , i.e.

f (p
n)(X) = ∑

α∈N[ 1
p
]
d

cp
n

α X
α.

2



If f = (f1, . . . , fe) ∈ RJXKe is a family of perfect formal power series then we

set f (p
n) = (f (p

n)

1 , . . . , f
(pn)
e ).

Remark 1.1. If R is a more general adic ring with ideal of definition I ⊆ R
then RJX1/p∞K is defined as the (I,X)-adic completion of limÐ→φRJXK. This
can be identified with the set of all series as in (1) such that for any n ∈ N the
set of α ∈ N[ 1

p
]d with ∣α∣ ≤ n and cα /∈ In is finite. With this convention we

have canonical isomorphisms RJX1/p∞KJY 1/p∞K ≅ RJX1/p∞ , Y 1/p∞K of adic
R-algebras for any second family of indeterminates Y .

Let PerfadR denote the full subcategory of AlgadR consisting of all adic R-
algebras S on which the Frobenius φ ∶ S → S is an automorphism of adic
rings, i.e. it is bijective with a continuous inverse. Note that φ−1 ∶ S → S
is continuous if and only if the ideal φ−1(I)/I ⊆ S/I is nilpotent for some
(equivalently, for every) ideal of definition I of S. This is true, for example, if
S admits a finitely generated ideal of definition. By abuse of terminology we
call PerfadR the category of perfect adic R-algebras. By (⋅)♭ ∶ AlgadR → PerfadR
we denote the perfection given by

S ↦ S♭ = lim←Ð
φ

S = {(sn)n≥0 ∈ SN ∣ spn+1 = sn for all n ≥ 0}

where S♭ is endowed with the projective limit topology. Note that S♭ is an
R-algebra via r ⋅ (sn)n≥0 = (r1/p

n ⋅ sn)n≥0. Moreover, φ−1 ∶ S♭ → S♭ is given
by (sn)n≥0 ↦ (sn+1)n≥0 which is clearly continuous.

Given an adic ring S let S○○ = {s ∈ S ∣ limn→∞ s
n = 0} denote its ideal of

topologically nilpotent elements. The universal properties of rings of perfect
formal power series can be summarized as follows.

Proposition 1.2. (i) For any S ∈ PerfadR the projection S♭ → S defined
by (sn)n≥0 ↦ s0 is an isomorphism of adic R-algebras.

(ii) For any S ∈ PerfadR the inclusion RJXK↪ RJX1/p∞K induces a functo-
rial bijection Homcont

R-alg(RJX1/p∞K, S) ≅ Homcont
R-alg(RJXK, S).

(iii) For any S ∈ AlgadR the projection S♭ → S induces a functorial bijection
Homcont

R-alg(RJX1/p∞K, S♭) ≅ Homcont
R-alg(RJX1/p∞K, S).

(iv) For any S ∈ PerfadR the map Homcont
R-alg(RJX1/p∞K, S)→ (S○○)d sending

ψ to (ψ(X1), . . . , ψ(Xd)) is bijective.

Proof. If S is perfect adic then the inverse in (i) is given by s ↦ (s1/pn)n≥0.
Parts (ii) and (iii) are the usual adjunctions between the adic (co)perfection
and the inclusion PerfadR ↪ AlgadR . Part (iv) follows from (ii) and the uni-
versal property of RJXK.

3



Given a family s = (s1, . . . , sd) of topologically nilpotent elements of S ∈
PerfadR the corresponding homomorphism ψs ∶ RJX1/p∞K→ S in Proposition
1.2 (iv) is the substitution homomorphism given by

ψs( ∑
α∈N[ 1

p
]
d

cαX
α) = ∑

α∈N[ 1
p
]
d

cαs
α = ∑

α∈N[ 1
p
]
d

cαs
α1
1 ⋯s

αd

d .

Here we use the convention sβ = si/pn = φ−n(si) for all s ∈ S and for all
β = i/pn ∈ N[ 1

p
] with i ∈ N and n ∈ Z. Given f ∈ RJX1/p∞K we write

ψs(f) = f(s) as usual.

A non-zero perfect formal power series of the form cαX
α with α ∈ N[ 1

p
]d and

cα ∈ R is called a monomial of degree ∣α∣. A non-zero element f ∈ RJX1/p∞K
is called homogenous of degree ν ∈ N[ 1

p
] if it is a finite sum of monomials

of degree ν. With this terminology, any perfect formal power series f(X)
as in (1) admits the convergent decomposition f(X) = ∑ν∈N[ 1

p
] fν(X) where

fν(X) = ∑∣α∣=ν cαXα is either zero or homogenous of degree ν. If f is non-
zero we call

ord(f) = min{ν ∈ N[ 1
p
] ∣ fν ≠ 0}

= min{ν ∈ N[ 1
p
] ∣ there is α ∈ N[ 1

p
]d with ∣α∣ = ν and cα ≠ 0}

the order of f and formally set ord(0) =∞. We then have the usual rules

(2) ord(f − g) ≥min{ord(f),ord(g)} and ord(fg) ≥ ord(f) + ord(g).

In the first case we have equality if the orders of f and g are distinct. In
the second case we have equality if R is an integral domain. This follows
from the corresponding fact for ordinary formal power series. For any real
number ν ≥ 0 consider the ideals

m≥ν = {f ∈ RJX1/p∞K ∣ ord(f) ≥ ν} and
m>ν = {f ∈ RJX1/p∞K ∣ ord(f) > ν}

of RJX1/p∞K and set m = m>0. Note that we have m≥1 = (X) and that mn = m
for any positive integer n.

Let ψ0 ∶ RJX1/p∞K → R denote the augmentation homomorphism sending
a perfect formal power series to its constant term f(0) = c0 ∈ R. Note
that R○○ = 0 because R carries the discrete topology and is reduced. As a
consequence, an element f ∈ RJX1/p∞K is topologically nilpotent if and only
if f(0) = 0, i.e. RJX1/p∞K○○ = ker(ψ0) = m. In particular, given a second
family of variables Y = (Y1, . . . , Ye) and g = (g1, . . . , gd) ∈ RJY 1/p∞Kd such
that g(0) = (g1(0) = . . . = gd(0)) = 0 we have the substitution homomorphism
ψg ∶ RJX1/p∞K→ RJY 1/p∞K and set

ord(g) =min{ord(g1), . . . ,ord(gd)}.
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Lemma 1.3. Let f ∈ RJX1/p∞K and g ∈ RJY 1/p∞Kd with g(0) = 0.

(i) We have ord(f(g)) ≥ ord(f) ⋅ ord(g).

(ii) If d = e = 1 and if the lowest coefficient cord(f) of f is not a zero divisor
then ord(f(g)) = ord(f) ⋅ ord(g).

Proof. Part (i) follows directly from (2). As for (ii), let α = ord(f), β =
ord(g) and let cα and dβ be the corresponding coefficients of f and g, re-
spectively. Plugging dβY

β into cαX
α gives cαd

α
βY

αβ. If dβ ≠ 0 then also
dαβ ≠ 0 because R is reduced. If cα is not a zero divisor we get cαd

α
β ≠ 0.

Since f(g) ≡ cαdαβY
αβ mod m>αβ by (i) the claim follows.

For the substitution into ordinary formal power series, the following lemma
is a variant of [6], Lemme 1.

Lemma 1.4. Let f ∈ RJXK and gi, hi ∈ RJY 1/p∞K with f(0) = gi(0) = hi(0) =
0 for 1 ≤ i ≤ d. Setting g = (g1, . . . , gd) and h = (h1, . . . , hd) we have

(3) ord(f(g) − f(h)) ≥ (ord(f) − 1) ⋅min{ord(g),ord(h)} + ord(h − g).

Proof. If 1 ≤ i ≤ d and mi ∈ N then gmi
i = hmi

i + ∑
mi
j=1 (

mi

j
)hmi−j

i (gi − hi)j .
Setting µ = min{ord(g),ord(h)} we have ord(gi − hi) ≥ ord(g − h) ≥ µ and
the above expansion shows that ord(gmi

i −h
mi
i ) ≥ (mi − 1) ⋅µ+ ord(g −h). If

m = (m1, . . . ,md) is non-zero then the expansion of a monomial

gm =
d

∏
i=1

gmi
i =

d

∏
i=1

(hmi
i + (g

mi
i − h

mi
i ))

gives hm plus a sum of terms of the form ∏i∈J hmi
i ⋅∏i∈J ′(g

mi
i − h

mi
i ) where

{1, . . . , d} is the disjoint union of J and J ′ with J ′ ≠ ∅. Using the above
estimates and ord(g − h) ≥ µ the order of any such product is bounded by
(∣m∣ − 1) ⋅ µ + ord(g − h) from below. Since f is the convergent series of
monomials cmX

m with ∣m∣ ≥ ord(f) > 0 the claim follows.

In particular, congruences between perfect formal power series are always
preserved by plugging them into ordinary formal power series. For the sub-
stitution into perfect formal power series we only get the following estimate.

Lemma 1.5. Let f ∈ RJX1/p∞K and gi, hi ∈ RJY 1/p∞K with f(0) = gi(0) =
hi(0) = 0 for 1 ≤ i ≤ d. Assume that ord(gi − hi) > min{ord(gi),ord(hi)} for
1 ≤ i ≤ d. Setting g = (g1, . . . , gd) and h = (h1, . . . , hd) we have

(4) ord(f(g) − f(h)) > ord(f)ord(g) = ord(f)ord(h).
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Proof. Note first that our assumptions imply ord(gi) = ord(hi) and ord(g) =
ord(h). Given αi =mi/pni ∈ N[ 1

p
] with mi ∈ N and ni ∈ Z we have

(5) gαi
i = h

αi
i +

mi

∑
j=1

(mi

j
)h(mi−j)/p

ni

i (gi − hi)j/p
ni
,

whence ord(gαi
i − h

αi
i ) > αi ⋅ ord(hi) ≥ αi ⋅ ord(g) by our assumptions. If

α = (α1, . . . , αd) ∈ N[ 1p]
d is non-zero then the expansion of a monomial

gα =
d

∏
i=1

gαi
i =

d

∏
i=1

(hαi
i + (g

αi
i − h

αi
i ))

shows ord(gα − hα) > ∣α∣ ⋅ ord(g) by arguing as in the proof of Lemma 1.4.
Now f is the convergent series of monomials cαX

α with ∣α∣ ≥ ord(f) > 0.
Moreover, inf{∣α∣ ∣ cα ≠ 0 and ∣α∣ > ord(f)} > ord(f). This implies the
claim.

We shall also need the following result.

Lemma 1.6. Fix f ∈ RJX1/p∞K and consider the ideal m ⊂ RJY 1/p∞K. Then
the map md → RJY 1/p∞K defined by h↦ f(h) is continuous for the (Y )-adic
topology on both sides.

Proof. Since RJY 1/p∞K is a topological ring on which Frobenius is a home-
omorphism, the statement is clear if f is a monomial. If f(X) = ∑α cαXα

it suffices to see that the pointwise convergence of h ↦ f(h) is uniform
on md

≥ν for any ν > 0. This follows from Lemma 1.3 (i) because we have
(∑∣α∣≥n/ν cαXα)(md

≥ν) ⊆ m≥n for any n ∈ N.

The condition for being a unit in RJX1/p∞K is the same as for ordinary for-
mal power series. Namely, an element f ∈ RJX1/p∞K is a unit in RJX1/p∞K if
and only if f(0) is a unit in R. In fact, if f(0) ∈ R is a unit we may assume
f(0) = 1 and use the geometric series to construct a multiplicative inverse
of f in RJX1/p∞K.

In the case of ordinary formal power series, the formal inverse function
theorem tells us that a substitution homomorphism ψg ∶ RJXK → RJXK
with g = (g1, . . . , gd) ∈ RJXKd and g(0) = 0 is an isomorphism if and only if
det(( ∂gi∂Xj

(0))i,j) is a unit in R. If d = 1 then we will also write g′ for the

formal derivative of an ordinary formal power series g. Note that formal
derivation is not available for perfect formal power series. In fact, the only
known bijectivity criterion for perfect formal power series concerns the case
d = 1. This was first studied by Kedlaya (cf. [4], Theorem 1). We give an
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alternative proof and slightly correct the criterion for general perfect rings
(cf. Example 1.13). In order to prepare for this note that the infinite product

c =
∞

∏
h=1

ph

ph − 1
=
∞

∏
h=1

(1 + 1

ph − 1
)

converges in the real numbers with

1 < c ≤ exp(
∞

∑
h=1

1

ph − 1
) ≤ exp(

∞

∑
h=0

1

ph−1
) = exp(1 + 1

p − 1
) ≤ exp(2).

Theorem 1.7. Assume that d = 1 and that R is an integral domain. Let
g ∈ RJX1/p∞K and ν ∈ N[ 1

p
] with ν > ord(g) = 1. If there is f ∈ m with

g(f) ≡X mod m≥cν then ord(f) = 1 and f, g ∈ RJXK +m>ν .

Proof. By working over the fraction field of R we may assume that R = k is
a perfect field of characteristic p. By Lemma 1.3 (ii) we have ord(g(f)) =
ord(g) ⋅ ord(f) = ord(f). Since ord(g(f) −X) ≥ cν > ν > 1 = ord(X) this
implies ord(f) = 1.

Assume that we can show g ∈ kJXK +m>ν . Let h ∈ kJXK with g − h ∈ m>ν .
Since ν > ord(g) this implies ord(h) = ord(g) = 1 whence ψh is bijective
by the inverse formal function theorem. Set H = ψ−1h (X) ∈ XkJXK so that
H(h) = X. By Lemma 1.4 we have H(g) ≡ H(h) = X mod m>ν . This im-
plies ord(H(g)(f)− f) = ord(H(g)−X) ⋅ ord(f) > ν by Lemma 1.3 (ii). On
the other hand, H(g)(f) = H(g(f)) ≡ H mod m>ν by Lemma 1.4 because
ord(g(f) − X) ≥ cν > ν. Altogether, f ≡ H(g)(f) ≡ H mod m>ν which
proves f ∈ kJXK +m>ν .

It remains to show g ∈ kJXK +m>ν . Assume the contrary and write g(X) =
∑α∈N[ 1

p
] cαX

α. Set g0 = ∑α∈N cαXα ∈ kJXK. For i ≥ 1 we define gi inductively.
If gi−1 ≠ g set νi = ord(g − gi−1), hi = −vp(νi) and gi = ∑vp(α)≥−hi cαX

α ∈
kJX1/phi K. If gi−1 = g we set gi = gi−1, νi = νi−1 and hi = hi−1. Both
sequences (νi)i≥1 and (hi)i≥1 are strictly increasing until they possibly be-

come constant. This happens if and only if g ∈ kJX1/phK with h = limi→∞ hi.
Otherwise, the sequences (νi)i≥1 and (hi)i≥1 are both unbounded. Assume
for the moment that we have the inequality

(6) ord(gi(f) −X) <
phi

phi − 1
νi

for all i ≥ 1. We will show by induction on i ≥ 1 that

(7) ord(gi(f) −X) < (
i

∏
j=1

phj

phj − 1
) ⋅ ν1,
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as long as the sequence (h1, . . . , hi) is strictly increasing. For i = 1 this
follows directly from (6). Now assume that (7) holds for i and note that
our assumption g /∈ kJXK + m>ν implies ν1 ≤ ν. Since the values h1, . . . , hi
are pairwise distinct we get ord(gi(f)−X) < cν1 ≤ cν ≤ ord(g(f)−X). This
implies

ord(gi(f) −X) = ord(gi(f) − g(f) + g(f) −X) = ord(gi(f) − g(f))
= ord(gi − g) = νi+1

by Lemma 1.3 (ii) because ord(f) = 1. Consequently,

ord(gi+1(f) −X)) <
phi+1

phi+1 − 1
νi+1 =

phi+1

phi+1 − 1
ord(gi(f) −X)

which implies (7) for i + 1 by the induction hypothesis. If gi−1 ≠ g = gi for
some i ≥ 1 this yields the contradiction ord(g(f) −X) = ord(gi(f) −X) <
ord(g(f) − X). If gi ≠ g for all i ≥ 1 we get that the sequence (νi)i≥1 is
bounded above by cν1. This is a contradiction, too.

In order to complete the proof it remains to show (6). We will ease the

notation and assume g = ∑α cαXα ∈ kJX1/phK with ord(g) = 1 and h ≥ 1 such
that there is α ∈ p−hN with vp(α) = −h and cα ≠ 0. Set

ν =min{α ∈ 1

ph
N ∣ cα ≠ 0 and vp(α) = −h}

and write ν = i/ph with i ∈ N ∖ pN. We will show that

(8) ord(g(f) −X) ≤ i − 1
ph − 1

for all f ∈ kJX1/p∞K with ord(f) = 1. Since (i − 1)/(ph − 1) < ph

ph−1
ν this will

complete the proof of the theorem.

Let E = Frac(kJXK) and F = Frac(kJX1/p∞K). The valuation ord extends
uniquely to a valuation on a fixed algebraic closure of E and to its com-
pletion C. We still denote it by ord and view F as a subfield of C. The
absolute Galois group of E acts on C by isometries. The action on F is
trivial because this is the completion of a purely inseparable extension of E.

Set h = ∑α≤(i−1)/(ph−1) cαXα and consider the polynomial

H(T ) = h(T p
h

) −X ∈ kJXK[T ] ⊂ E[T ].

Note that ord(g) = 1 < ν whence i > ph and (i − 1)/(ph − 1) > ν. This gives
i ≤ deg(H) = m. If n denotes the largest integer less than ν the minimality
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of ν implies

H(T ) =
n

∑
j=1

cjT
jph + cνT i +

m

∑
j=i+1

cj/phT
j −X.

Since H ′(T ) ∈ k[T ] the roots of H ′ in C are 0 or of order 1. No such element
is a root of H so that H is separable over E. Since H ′(T ) = icνT i−1G(T )
with G ∈ k[T ] and G(0) ≠ 0 we have ord(H ′(β)) = (i−1)ord(β) for all β ∈ C
with ord(β) > 0.

Since ord(g) = 1 we have c1 ∈ k×. Therefore, the reduction H =H mod (X)
satisfies H(T ) = T ph ⋅H2(T ) for some polynomial H2 ∈ k[T ] of degree m−ph

with H2(0) = c1 ≠ 0. In particular, T p
h
and H2 are relatively prime. By

Hensel’s lemma the decomposition lifts to a decomposition H = H1 ⋅H2 in
kJXK[T ] with H1 monic of degree ph. In particular, H2(0) ∈ kJXK× and
ord(H1(0)) = ord(H(0)) = 1. Moreover, the coefficients of H1 lie in XkJXK
except for the leading one. Therefore, H1 is an Eisenstein polynomial, hence
is irreducible. Since it divides H it is also separable over E.

Let α1, . . . , αph ∈ C be the roots of H1(T ) = ∏p
h

j=1(T − αj). Note that these
are Galois conjugate because H1 is irreducible. Thus, they all have the same

order. Since 1 = ord(H1(0)) = ∑p
h

j=1 ord(αj) we get ord(αj) = 1/ph for all j.

Note also that ord(H2(f1/p
h)) = 0 because the constant term of H2 is a unit

and ord(f1/ph) > 0. This implies ord(H1(f1/p
h)) = ord(H(f1/ph)).

Moreover, H ′(α1) = H ′1(α1)H2(α1) with ord(H2(α1)) = 0 as above which
implies ord(H ′1(α1)) = ord(H ′(α1)) = (i−1)/ph. Since the Galois action fixes

f1/p
h
and permutes the roots of H1 transivitely we also get ord(f1/ph −αj) =

ord(f1/ph − α1) for all 1 ≤ j ≤ ph. This implies

ord(α1 − αj) ≥ min{ord(f1/p
h

− αj),ord(f1/p
h

− α1)}

= ord(f1/p
h

− αj).

Altogether, the decompositions H1(f1/p
h) =∏p

h

j=1(f
1/ph − αj) and H ′1(α1) =

∏p
h

j=2(α1 − αj) give

ord(h(f) −X) = ord(H(f1/p
h

)) = ord(H1(f1/p
h

)) =
ph

∑
j=1

ord(f1/p
h

− αj)

= ph

ph − 1

ph

∑
j=2

ord(f1/p
h

− αj) ≤
ph

ph − 1

ph

∑
j=2

ord(α1 − αj)

= ph

ph − 1
ord(H ′1(α1)) =

i − 1
ph − 1

.
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By the definition of h and by Lemma 1.3 (ii) we obtain ord(g(f) − h(f)) =
ord(g − h) > (i − 1)/ph ≥ ord(h(f) − X). This implies ord(g(f) − X) =
ord(g(f)−h(f)+h(f)−X) = ord(h(f)−X) ≤ (i−1)/(ph−1) as claimed.

As an immediate application we obtain the following bijectivity criterion.

Corollary 1.8. Assume that d = 1 and let g ∈ RJX1/p∞K with g(0) = 0. If
R is an integral domain then ψg ∶ RJX1/p∞K → RJX1/p∞K is bijective if and

only if g(X) = g̃(Xph) for some h ∈ Z and g̃ ∈ RJXK with g̃′(0) ∈ R×. In this
case the integer h and the power series g̃ are uniquely determined by g.

Proof. The uniqueness is clear from h = logp(ord(g)) and g̃(X) = g(Xph).
By the inverse formal function theorem, the condition is clearly sufficient for
the bijectivity of ψg. Conversely, if ψg is bijective then there is f ∈ RJX1/p∞K
with f(g) = X. Thus, f(0) = 0 and ψf = ψ−1g . Let α = ord(g), β = ord(f)
and let cα and dβ be the corresponding coefficients of g and f , respectively.
As in the proof of Lemma 1.3 (ii) we have X = g(f) ≡ cαdαβX

αβ mod m>αβ.

Now cαd
α
β ≠ 0 because R is an integral domain. This implies X = cαdαβX

αβ

which gives cα, dβ ∈ R× and αβ = 1 in N[ 1
p
]. In particular, we must have

α = ph for some h ∈ Z.

Replacing g by g(X1/ph) we may thus assume ord(g) = ord(f) = 1. The
statement is then a consequence of Theorem 1.7.

Remark 1.9. If g(X) = X + X1+ 1
p ∈ FpJX1/p∞K then ψg is not bijective

by Corollary 1.8. Still, one can run the usual algorithm and try to find
f ∈ FpJX1/p∞K with g(f(X)) = X. In fact, define fn(X) = ∑nj=0 cjXαj

inductively by f0 = X and X − g(fn(X)) ≡ cn+1Xαn+1 mod m>αn+1 with
cn+1 ≠ 0. The algorithm cannot converge, i.e. the strictly increasing sequence
(αn)n≥0 has to be bounded. However, it seems hard to prove this directly
even in this explicit example.

Under the assumptions of Corollary 1.8 the integer

h = ht(ψg) = logp(ord(g))

is called the height of the automorphism ψg. More generally, assume that
g ∈ RJX1/p∞K with d = 1 and g(0) = 0 where R is an arbitrary perfect ring
of characteristic p. Note that if p ∈ Spec(R) is a prime ideal then also the
integral domain R/p is a perfect ring of characteristic p. Moreover, ψg in-
duces an endomorphism of (R/p)JX1/p∞K by reducing all coefficients modulo
p. It coincides with ψgp where gp is the image of g under the canonical ring

homomorphism RJX1/p∞K → (R/p)JX1/p∞K. If ψg is bijective then so is ψgp
for all p ∈ Spec(R). Indeed, we have ψ−1g = ψf for some f ∈ RJX1/p∞K with
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f(0) = 0 and ψfp is inverse to ψgp . We then define the height of ψg as the
map

(9) ht(ψg) ∶ Spec(R)Ð→ Z, p↦ ht(ψgp).

Lemma 1.10. The height function (9) is Zariski locally constant.

Proof. Let p and q be prime ideals of R with p ⊆ q. Then ord(gp) = ord(gq)
because the lowest coefficient of gp is a unit in R/p (cf. Lemma 1.8) and
stays a unit when reducing further modulo q. This shows that the subset of
Spec(R) where ht(ψg) takes a fixed constant value is closed under special-
ization.

Now write g(X) = ∑∞j=0 cjXαj with cj ∈ R and αj < αj+1 for all j ≥ 0. Note
that any value of ht(ψg) is of the form logp(αj) for some j ≥ 0. Define

Xj = {p ∈ Spec(R) ∣ ord(gp) = αj} and note that either Xj = ∅ or αj = phj
for some hj ∈ Z (cf. Lemma 1.8). In the latter case the height function takes
the constant value logp(αj) = hj on Xj . Therefore, it suffices to show that
the sets Xj are open in Spec(R). We have X0 =D(c0) and

(10) Xj = V (c0) ∩ . . . ∩ V (cj−1) ∩D(cj)

for all j > 0 with the usual notation for principal open and closed subsets of
Spec(R). We will show by induction on j ≥ 0 that⋂ji=0 V (ci) andXj are both
open and closed. Of course, D(c0) = X0 is open and quasi-compact, hence
is constructible (cf. [3], Proposition 10.44). By the above arguments X0 is
stable under specialization, hence is closed by [3], Remark 10.46. Therefore,
also V (c0) is open and closed, settling the case j = 0.

Now assume that the statement is true for j−1. Then Xj is open and quasi-
compact by (10). The same arguments as above show that Xj is also closed.

By the induction hypothesis, also ⋃ji=0D(ci) =Xj ∪⋃j−1i=0 D(ci) is both open

and closed and so is its complement ⋂ji=0 V (ci).

Proposition 1.11. Let d = 1 and g ∈ RJX1/p∞K with g(0) = 0 and assume
that ψg is bijective. If h ∈ Z denotes the minimal value of the height function

ht(ψg) then g̃(X) = g(X1/ph) ∈ RJXK. We have g̃′(0) ∈ R× if and only if
ht(ψg) is constant.

Proof. Note first that the minimal value h ∈ Z exists because Spec(R) is
quasi-compact and ht(ψg) is locally constant (cf. Lemma 1.10). To show

that g̃(X) = g(Xp−h) is an ordinary formal power series write g̃(X) =
∑α∈N[ 1

p
] cαX

α and let p ∈ Spec(R). Together with ψg also ψg̃ and ψg̃p are

bijective. By Lemma 1.3 (ii) and Lemma 1.8 we have

pht(ψg̃p) = ord(g̃p) = ord(gp(Xp−h)) = p−h ⋅ ord(gp) = pht(ψgp)−h ≥ 1
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by the minimality of h. This implies ht(g̃p) ≥ 0 and therefore g̃p ∈ (R/p)JXK
by Lemma 1.8 again. This gives cα ∈ p for all α /∈ N and all p ∈ Spec(R).
Since R is reduced, the intersection of all p is zero. Thus, cα = 0 for all α /∈ N.

If ht(ψg) is constant it remains to see that the first coefficient c1 of g̃ is a unit
in R. Since ord(g̃p) = p−h ⋅ord(gp) = 1 we have c1 /∈ p for all prime ideals p of
R. This implies c1 ∈ R×. Conversely, if g̃′(0) ∈ R× then the lowest coefficient

of g(X) = g̃(Xph) is a unit in R. This implies ord(gp) = ord(g) = ph for all
p ∈ Spec(R), whence ht(ψg) is constant with value h.

As a consequence we obtain the following generalization of Corollary 1.8.

Corollary 1.12. Assume that d = 1 and let g ∈ RJX1/p∞K with g(0) = 0. If
R is connected then ψg ∶ RJX1/p∞K → RJX1/p∞K is bijective if and only if

g(X) = g̃(Xph) for some h ∈ Z and g̃ ∈ RJXK with g̃′(0) ∈ R×. In this case
the integer h is the unique value of ht(ψg).

Proof. By the inverse formal function theorem, the condition is clearly suf-
ficient for the bijectivity of ψg. Conversely, if ψg is bijective then ht(ψg)
is constant by Lemma 1.10 because Spec(R) is connected. The statement
then follows from Proposition 1.11.

More generally, if ψg is bijective then Lemma 1.10 allows us to decompose
R =∏ni=1Ri into a finite direct product of perfect rings Ri such that ht(ψg)
has some constant value hi on Spec(Ri). There is an induced decompo-
sition RJX1/p∞K = ∏ni=1RiJX1/p∞K such that ψg = (ψg1 , . . . , ψgn) where g =
(g1, . . . , gn) is the corresponding decomposition of g. Then ψ(gi)p = ψgp for all
p ∈ Spec(Ri) and ht(ψgi) is constant. Therefore, g̃i(X) = gi(X1/phi ) ∈ RiJXK
with g̃′i(0) ∈ R×i by Proposition 1.11. Such a representation of g need not
exist globally, as soon as R is disconnected.

Example 1.13. Consider the perfect ring R = Fp ×Fp with principal idem-
potents e1 = (1,0) and e2 = (0,1). Then g(X) = e1X + e2Xp and f(X) =
e2X

1/p + e1X satisfy g(f) = f(g) = X whence ψg ∶ RJX1/p∞K → RJX1/p∞K is
bijective with inverse ψf . The height function ht(ψg) has the constant value
0 on D(e1) and the constant value 1 on D(e2). The corresponding decom-
position of g over the two copies of Fp is g = (X,Xp). Globally, g cannot be

written in the form g(X) = g̃(Xph) with h ∈ Z, g̃ ∈ RJXK and g̃′(0) ∈ R× (cf.
Proposition 1.11 or a direct check). Although ψg is bijective on RJX1/p∞K
and although g is an ordinary formal power series of order 1 the induced
endomorphism of RJXK is not bijective. Note that in this example we have
1 = ord(X) = ord(g(f)) > 1/p = ord(g)ord(f) in contrast to what is claimed
at the beginning of the proof of [4], Theorem 1. This also shows that the
extra condition on R in Lemma 1.3 (ii) and Theorem 1.7 is really necessary.
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We also include the following result which probably admits a more direct
proof.

Corollary 1.14. Assume that d = 1 and let g ∈ RJX1/p∞K with g(0) = 0.
Then ψg is bijective if and only if ψgp is bijective for all p ∈ Spec(R).

Proof. If ψg is bijective then ψ−1g = ψf for some f ∈ RJX1/p∞K and ψfp is
inverse to ψgp for all p ∈ Spec(R). Conversely, if all ψgp are bijective one
can define the height function ht(ψg) ∶ Spec(R)→ Z as in (9). The proof of
Lemma 1.10 then goes through because the bijectivity of ψg is never used.
Decomposing R as above we may assume that ht(ψg) is constant with value

h. Setting g̃(X) = g(X1/ph) we have g̃p ∈ (R/p)JXK and g̃′p(0) ∈ (R/p)× for
any p ∈ Spec(R) by Lemma 1.8. Since R is reduced this implies g̃ ∈ RJXK
and g̃′(0) ∈ R×. But then ψg̃ is bijective by the formal inverse function
theorem and so is ψg.

A posteriori, being an automorphism ofRJX1/p∞K is Zariski local on Spec(R)
in the following more classical sense. Note that if p ∈ Spec(R) then the
localization Rp is again a perfect ring. Given g ∈ RJX1/p∞K we denote by g(p)
its image under the canonical ring homomorphism RJX1/p∞K→ RpJX1/p∞K.

Corollary 1.15. Assume that d = 1 and let g ∈ RJX1/p∞K with g(0) = 0.
Then ψg is bijective if and only if ψg(p) is bijective for all p ∈ Spec(R).

Proof. As before it suffices to show that the condition is sufficient. Thus, let
us assume that all ψg(p) are bijective. Write g = ∑∞j=0 cjXαj with αj < αj+1
and cj ∈ R for all j ≥ 0. Then ord(g(p)) = α0 for all p ∈D(c0). Since any local

ring is connected we have α0 = ph and g(p)(X1/ph) ∈ RpJXK for some h ∈ Z by
Corollary 1.12. Note that α0 and hence h are independent of p ∈D(c0) and
that the canonical map R0 = Rc0 → ∏p∈D(c0)Rp is injective. If g0 denotes

the image of g under the induced map RJX1/p∞K → R0JX1/p∞K we obtain

g0(X1/ph) ∈ RJXK with lowest coefficient c0 ∈ R×0 . It follows from the formal
inverse function theorem that ψg0 is bijective.

For any prime ideal p ∈ V (c0) we have c0 /∈ R×p . Since the local ring Rp is
connected the lowest coefficient of g(p) is a unit in Rp by Corollary 1.12.
Thus, c0 = 0 in Rp and there is s ∈ R ∖ p with sr = 0 in R. This implies
c0 = 0 in Rq and hence c0 ∈ q for any q ∈D(s). We get that D(s) ⊆ V (c0) is
an open neighborhood of p. Since p was arbitrary V (c0) is an open subset
of Spec(R). Setting R′0 = R/c0R it follows that the canonical ring homo-
morphism R → R0 ×R′0 is bijective and that both factors are again perfect.
We obtain corresponding decompositions g = (g0, g′0) and ψg = (ψg0 , ψg′0) for
which ψg0 is bijective by the first part of the proof.
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Proceeding inductively we construct decompositions R ≅ R0×. . .×Rn×R′n for
any n ≥ 0 such that R′n = R/(c0, . . . , cn) and such that if g = (g0, . . . , gn, g′n)
denotes the corresponding decomposition of g then ψgj is bijective for all
0 ≤ j ≤ n. Let I ⊆ R be the ideal generated by the coefficients of g. If I were
a proper ideal we could choose a prime ideal m ∈ Spec(R) with I ⊆ m. But
then none of the coefficients of g(m) would be a unit in Rm and ψg(m) could
not be bijective by Corollary 1.12. Thus, I = R which implies (c0, . . . , cn) = R
for some n ≥ 0 and R′n = 0. Thus, R ≅ R0 × . . . ×Rn and the bijectivity of
ψg0 , . . . , ψgn implies that of ψg.

2 Perfect formal group laws

Let Set∗ denote the category of pointed sets. For any integer d ≥ 1 we have
the functor

(11) Nild ∶ PerfadR Ð→ Set∗, S ↦ (S○○)d,

with 0 = (0, . . . ,0) ∈ (S○○)d as the distinguished element. As seen in Propo-
sition 1.2 it is represented by RJX1/p∞K with X = (X1, . . . ,Xd).

Definition 2.1. A d-dimensional perfect formal group law over R is a fam-
ily G = (G1, . . . ,Gd) ∈ RJX1/p∞ , Y 1/p∞Kd of d perfect formal power series
Gi(X,Y ) in 2d variables (X,Y ) = (X1, . . . ,Xd, Y1, . . . , Yd) such that

(i) G(X,0) =X in RJX1/p∞Kd and

(ii) G(G(X,Y ), Z) = G(X,G(Y,Z)) in RJX1/p∞ , Y 1/p∞ , Z1/p∞Kd.

A perfect formal group law G is called commutative if

(iii) G(X,Y ) = G(Y,X) in RJX1/p∞ , Y 1/p∞Kd.

Here we use the usual conventionG(f, f ′) = (G1(f, f ′), . . . ,Gd(f, f ′)) for the
substitution of f = (f1, . . . , fd) and f ′ = (f ′1, . . . , f ′d) and set Z = (Z1, . . . , Zd).
Of course, any ordinary d-dimensional (commutative) formal group law over
R is a (commutative) perfect formal group law in the sense of Definition 2.1.
Since we will only be interested in the commutative case, we will simply
speak of perfect formal group laws in the following.

Let G be a d-dimensional perfect formal group law over R. Given S ∈ PerfadR
it functorially turns the set Nild(S) = (S○○)d into a monoid G(S) with zero
element 0 = (0, . . . ,0) via s+G t = G(s, t). If G is commutative then so is the
monoid G(S).

Proposition 2.2. Let G be a functor from PerfadR to the category of monoids
whose composition with the forgetful functor into Set∗ isomorphic to Nild.
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(i) There is a unique perfect formal group law G of dimension d over
R such that the addition in the monoid G(S) = (S○○)d is given by
s + t = s +G t = G(s, t) functorially in S for all S ∈ PerfadR .

(ii) The functor G takes values in the category of commutative monoids if
and only if G is commutative.

(iii) If G takes values in the category Ab of abelian groups then there is a
unique family ι = (ι1, . . . , ιd) ∈ RJX1/p∞Kd with ι(0) = 0 such that the
inversion in G(S) = (S○○)d is given by −s = ι(s) functorially in S for
all S ∈ PerfadR .

Proof. Set S = RJX1/p∞ , Y 1/p∞K and define G = X + Y in G(S) noting that
X,Y ∈ (RJX1/p∞ , Y 1/p∞K○○)d. It then follows from the axioms of the monoid
G(S) that G is a perfect formal group law. Under the assumptions in (iii) set
S = RJX1/p∞K and define ι = −X in G(S). All of the remaining statements
then follow from the fact that the underlying functor of G into pointed sets
is represented by RJX1/p∞K.

In the situation of Proposition 2.2 we have G(X, ι(X)) = 0. If G ∈ RJX,Y Kd

is an ordinary formal group law over R then the existence of ι ∈ RJXKd with
ι(0) = 0 and G(X, ι(X)) = 0 is already implied by the axioms in Definition
2.1. Thus, in the ordinary case G(S) is automatically an abelian group and
not only a commutative monoid. In the one-dimensional perfect case, we
shall see that the existence of ι is automatic, as well (cf. Corollary 2.6 (ii)).

Definition 2.3. Let G and H be perfect formal group laws over R of di-
mensions d and e, respectively. A homomorphism f ∶ G → H is a family
f = (f1, . . . , fe) of elements fi ∈ RJX1/p∞K in d-variables X = (X1, . . . ,Xd)
such that f(0) = 0 and f(G(X,Y )) = H(f(X), f(Y )) in RJX1/p∞ , Y 1/p∞Ke

where Y = (Y1, . . . , Yd).

In the situation of Definition 2.3 we shall write HomR(G,H) for the set
of homomorphisms from G to H. If we define the composition of homo-
morphisms via substitution then perfect formal group laws over R form a
category FGLperf

R with idG = X. Via +H the set HomR(G,H) is in fact a
commutative monoid and EndR(G) = HomR(G,G) is a semiring. Note that
there is a unique homomorphism

NÐ→ EndR(G), m↦ [m]G,

of semirings which can be constructed inductively via [0](X) = 0, [1](X) =
X and [m + 1](X) = G([m]G(X),X) for all m ∈ N.

Lemma 2.4. If G and H are perfect formal group laws over R of dimensions
d and e, respectively, then HomR(G,H) is complete for the topology induced
by the X-adic topology on RJX1/p∞Ke.
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Proof. Let (f (n))n∈N = ((f
(n)
1 , . . . , f

(n)
e ))n∈N be sequence of homomorphisms

f (n) ∶ G→H which is an X-adic Cauchy sequence and let f = (f1, . . . , fd) =
limn→∞ f

(n) = (limn→∞ f
(n)
1 , . . . , limn→∞ f

(n)
e ) ∈ RJX1/p∞Ke. By the conti-

nuity of the substitution homomorphism ψG and by the continuity of h ↦
Hi(h(X), h(Y )) (cf. Lemma 1.6) we have fi(G(X,Y )) −Hi(f(X), f(Y )) =
limn→∞(f (n)i (G(X,Y )) −Hi(f (n)(X), f (n)(Y ))) = 0 for 1 ≤ i ≤ e.

For the following discussion we fix a one-dimensional perfect formal group
law G = G(X,Y ) over R. Write

G(X,Y ) = ∑
α,β∈N[ 1

p
]

cαβX
αY β

with cαβ ∈ R and let G = ∑ν∈N[ 1
p
]Gν be the decomposition of G into its ho-

mogeneous components. For any α ∈ N[ 1
p
] write G(X,Y )α = ∑β fαβ(X)Y β

with fαβ ∈ RJX1/p∞K. The law of associativity gives

∑
β

fαβ(G(X,Y ))Zβ = G(G(X,Y ), Z)α = G(X,G(Y,Z))α

= ∑
δ

fαδ(X)G(Y,Z)δ =∑
γ,δ

fαδ(X)fδγ(Y )Zγ

whence

(12) fαβ(G(X,Y )) =∑
δ

fαδ(X)fδβ(Y )

in RJX1/p∞ , Y 1/p∞K for all α,β ∈ N[ 1
p
].

It follows from Definition 2.1 (i) and (iii) that the perfect formal power
series G satisfies G(X,Y ) =X +Y +∑α,β>0 cαβXαY β, i.e. except for X +Y it
has only mixed terms. We will use the relations (12) to prove the following
strengthening. An even stronger result is claimed in [1], Lemma 4.12. The
first part of our proof is taken from [1], Proposition 4.20. It says that
the ideal (X) ⊂ RJX1/p∞K is a topological coideal for the topological Hopf
algebra structure on RJX1/p∞K induced by G.

Lemma 2.5. If G is a one-dimensional perfect formal group law over R
then G(X,Y ) ∈ (X,Y ), i.e. if α,β ∈ N[ 1

p
] with cαβ ≠ 0 then α ≥ 1 or β ≥ 1.

In particular, ord(G) = 1 and G1(X,Y ) =X + Y .

Proof. We need to see cαβ = 0 whenever α < 1 and β < 1. Since R is reduced
this can be checked after reduction modulo the various prime ideals of R.
We may therefore assume that R is an integral domain. Passing to its field
of fractions we may even assume that R = k is field. In this case kJX1/p∞K
is a valuation ring.
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Consider the ideal I = (f1β)β<1 ⊂ kJX1/p∞K and note that (X) ⊆ I because
f10 = X. Moreover, f1β = ∑α cαβXα and there are only finitely many α,β
with α < 1, β < 1 and cαβ ≠ 0. Thus, f1β ∈ (X) for almost all β < 1 and I
is finitely generated. Finally, if β ≠ 1 then f1β ∈ m whence I is not the unit
ideal. Altogether, we obtain I = (Xν) for some 0 < ν ≤ 1.

We claim that G(X,Y )ν ∈ (Xν , Y ν) and need to show f1β(G(X,Y )) ∈
(Xν , Y ν) for all β < 1. By (12) it suffices to show fδβ ∈ I whenever β < 1 ≤ δ.
But if δ ≥ 1 the equality

∑
β

fδβ(X)Y β = G(X,Y )δ = G(X,Y ) ⋅G(X,Y )δ−1

= (∑
µ

f1µ(X)Y µ) ⋅ (∑
γ

fδ−1,γ(X)Y γ)

= ∑
β

( ∑
µ+γ=β

f1µ(X)fδ−1,γ(X))Y β

gives fδβ = ∑µ+γ=β f1µfδ−1,γ . If µ + γ = β < 1 then also µ < 1 and we get

fδβ ∈ I as desired. Writing ν = i/ph with h ∈ Z and i ∈ N ∖ pN we get
G(X,Y )i ∈ (Xi, Y i) and need to show i = 1.

If ν0 = ord(G) then G(X,Y )i ≡ Gν0(X,Y )i mod m>iν0 by Lemma 1.5. Fur-
ther, ord(Gν0(X,Y )i) = iν0 and Gν0(X,Y )i is the homogeneous component
of G(X,Y )i of lowest degree. Together with G(X,Y )i all of its homogeneous
components lie in (Xi, Y i). In particular, we get Gν0(X,Y )i ∈ (Xi, Y i).

Let us first assume ν0 < 1. Then Gν0 consists only of mixed terms. If
XαY ν0−α is the unique monomial of Gν0 with the smallest power of X then
XiαY i(ν0−α) is one of the monomials of Giν0 . Since α < ν0 < 1 and ν0 − α <
ν0 < 1 this does not lie in (Xi, Y i). This contradiction implies ν0 = 1. If the
monomial of G1 with the smallest positive power of X is of the form XαY 1−α

with 0 < α < 1 then Y i−1XαY 1−α = XαY i−α is one of the monomials of Gi1.
Since α < 1 ≤ i and i−α < i this does not lie in (Xi, Y i). This contradiction
implies G1(X,Y ) =X + Y . But since i ≠ 0 in k we have (X + Y )i ∈ (Xi, Y i)
if and only if i = 1.

Corollary 2.6. If G is a one-dimensional perfect formal group law over R
then the following statements hold.

(i) For any m ∈ N we have [m]G(X) ≡mX mod m>1.

(ii) The limit ι(X) = limn→∞[pn−1]G(X) exists in EndR(G) and satisfies
G(X, ι(X)) = 0. In particular, G(S) is an abelian group with inversion
−s = ι(s) for all s ∈ S functorially in S ∈ PerfadR .
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(iii) The homomorphism N→ EndR(G) extends to a continuous ring homo-
morphism Zp → EndR(G) still denoted by m ↦ [m]G(X). Its kernel
is zero or the ideal generated by p.

(iv) If m ∈ Z×p then [m]G(X) ∈ RJXK is an ordinary formal power series
with [m]′G(0) ∈ R×.

Proof. Part (i) is proved by induction on m ≥ 0, the cases m = 0 and m = 1
being clear. Let the statement be true for m. By Lemma 2.5 we may write
G(X,Y ) = X + Y + ρ(X,Y ) with ord(ρ) > 1. Then ord(ρ(X, [m]G(X))) ≥
ord(ρ) > 1 by Lemma 1.3 (i) and the induction hypothesis. This gives
[m+1]G(X) = G(X, [m]G(X)) =X+[m]G(X)+ρ(X, [m]G(X)) ≡ (m+1)X
mod m>1.

Since pR = 0 we obtain ord([p]G(X)) > 1 and limn→∞[(p − 1)pn]G(X) = 0
in the X-adic topology by Lemma 1.3. For any n ∈ N let us set ιn(X) =
[pn − 1]G(X) and note that ord(ιn) ≥ 1 by (i). Since ρ consists of mixed
terms we have limn→∞ ρ(ιn(X), [(p − 1)pn]G(X)) = 0. As

ιn+1(X) = G(ιn(X), [(p − 1)pn]G(X))
= ιn(X) + [(p − 1)pn]G(X) + ρ(ιn(X), [(p − 1)pn]G(X))

we see that (ιn)n∈N is an X-adic Cauchy sequence. Therefore, the limit ι(X)
exists in RJX1/p∞K and is an endomorphism of G by Lemma 2.4. By Lemma
1.6 we have

G(X, ι(X)) = G(X, lim
n→∞

ιn(X)) = lim
n→∞

G(X, ιn(X))

= lim
n→∞
[pn]G(X) = 0.

This proves (ii). In particular, EndR(G) is not only a semiring but a (not
necessarily commutative) ring. Therefore, the map N → EndR(G) extends
to a ring homomorphism Z → EndR(G). By the arguments already given,
it is continuous for the p-adic topology on Z and extends to Zp as required.
If the kernel of Zp → EndR(G) is non-zero there is a positive integer n with
[pn]G(X) = 0. Assume that ν = ord([p](X)) <∞ and let c denote the low-
est coefficient of [p]G(X). Then 0 = [pn]G(X) ≡ cµXnν mod m>nν for some
µ ∈ N[ 1

p
]. This implies c = 0 because R is reduced, leading to a contradiction.

If m ∈ Z×p then the substitution homomorphism ψ[m]G is bijective with in-
verse ψ[m−1]G . Note that ord([m]G) = 1 and that the lowest coefficient of
[m]G(X) is a unit inR by (i). In fact, this is the image ofm under the canon-
ical ring homomorphism Zp → Fp → R. Therefore, the height function of
ψ[m]G is zero and it follows from Proposition 1.11 that [m]G(X) ∈ RJXK.
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We continue to denote by G a one-dimensional perfect formal group law
over R. Consider the discrete R-algebra A = RJX1/p∞K/(X) and note that
the canonical map

A⊗R A = RJX1/p∞K/(X)⊗R RJY 1/p∞K/(Y )Ð→ RJX1/p∞ , Y 1/p∞K/(X,Y )

is an isomorphism. We will use it to identify these two rings. Since the
power series ι(X) = [−1]G(X) ∈ RJXK has order 1 by Corollary 2.6 the
automorphism ψι of RJX1/p∞K induces an automorphism

ι ∶ A→ A, f + (X)↦ f(ι(X)) + (X),

of A by Lemma 1.3 (i) satisfying ι ○ ι = idA. By Lemma 2.5 the substitu-
tion homomorphism ψG ∶ RJX1/p∞K→ RJX1/p∞ , Y 1/p∞K induces a homomor-
phism of R-algebras

∆ ∶ AÐ→ A⊗R A, f + (X)↦ f(G(X,Y )) + (X,Y ).

Finally, consider the structure map R → A and the augmentation A → R
sending f +(X) to f(0). It then follows from the properties of G(X,Y ) and
ι(X) that the above data make A a cocommutative Hopf algebra over R.

Theorem 2.7. If G ∈ RJX1/p∞ , Y 1/p∞K is a one-dimensional perfect formal
group law over R then G ∈ RJX,Y K, i.e. any one-dimensional perfect formal
group law over R is an ordinary formal group law.

Proof. Writing G(X,Y ) = ∑α,β∈N[ 1
p
] cαβX

αY β we need to see cαβ = 0 unless

α,β ∈ N. Since R is reduced this can be checked after reduction modulo the
various prime ideals p of R. Passing to the fraction field of R/p we may thus
assume that R = k is a perfect field of characteristic p.

Note that A = ⋃n≥0An is the increasing union of the local subrings An =
kJX1/pnK/(X) of k-dimension pn. Let m be an integer with m ≥ 3. By [8],
Theorem 3.3, there is a Hopf subalgebra B of A which is finitely generated
as a k-algebra and which contains the class of X1/pm . Then B is finite
dimensional over k and a local ring. By [8], Theorem 14.4, there is an
isomorphism

B ≅ k[T1, . . . , Td]/(T p
n1

1 , . . . , T p
nd

d )

of k-algebras. Renumbering the variables we may assume 1 ≤ n1 ≤ . . . ≤ nd.
Choosing representatives Tj = Gj + (X) with Gj ∈ m ⊂ kJX1/p∞K we have
1/pnj ≤ ord(Gj) < 1/(pnj − 1) because the index of the nilpotent element
Tj is pnj . The elements ∏dj=1 T

αj

j with 0 ≤ αj < pnj for 1 ≤ j ≤ d form a
k-basis of B. If d ≥ 2 we get that the nilpotent element T1T2 has index pn1 .
However,

ord(G1G2) ≥
1

pn1
+ 1

pn2
≥ 2 1

pn1
≥ 1

pn1 − 1
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shows (T1T2)p
n1−1 = 0. This contradiction implies d = 1, i.e. we have

B = k[T ]/(T pn) for some n ≥ 1 and write T = G+(X). Since X1/pm+(X) ∈ B
there is a polynomial F ∈ k[X] with F (G) ≡X1/pm mod m≥1 =XkJX1/p∞K.
This implies pm ⋅ ord(F ) ⋅ ord(G) = 1 with ord(F ) ∈ N and ord(G) ∈ N[ 1

p
].

The unique prime factorization in N gives ord(G) = 1/pℓ and ord(F ) = pℓ−m
for some integer ℓ ≥m. But then ℓ = n by the above bounds on ord(G).

Setting g = Gpn and f(X) = F (X1/pn)pm the elements f, g ∈ kJX1/p∞K are
both of order 1 and satisfy f(g) = F (G)pm ≡ X mod m≥pm . Theorem 1.7
then yields g ∈ kJXK + m>pm/c for some real constant 1 < c < 8. In par-

ticular, g ∈ kJXK + m≥pm−3 and equivalently T p
n−m+3 ∈ Am−3. However, the

k-subalgebra of B = k[T ]/(T pn) generated by T p
n−m+3

has k-dimensionm−3.
Since this is the k-dimension of Am−3 we obtain Am−3 = k[T p

n−m+3]/(T pn) =
Bpn−m+3 which is a Hopf subalgebra of A.

Since m ≥ 3 was arbitrary we get that Am is a Hopf subalgebra of A for
any m ≥ 0. In particular, we have ∆(X1/pm) = G(X,Y )1/pm + (X,Y ) ∈
kJX1/pm , Y 1/pmK/(X,Y ) and hence G(X,Y ) ∈ kJX,Y K+(Xpm , Y pm) for any
m ≥ 0. This implies G(X,Y ) ∈ kJX,Y K as claimed.

Remark 2.8. A posteriori, it follows that any one-dimensional perfect for-
mal group law G over R is automatically commutative, i.e. if d = 1 then the
condition in Definition 2.1 (iii) is automatic (cf. [6], Théorème 1, noting that
R is reduced).

We pass back to a more general situation and denote by G0 ∈ RJX,Y Kd a
d-dimensional ordinary formal group law over R. By the same symbol we
denote the functor G0 ∶ AlgadR → Ab represented by RJXK. We write G in-
stead of G0 if this is viewed as a perfect formal group law, i.e. as an element
of RJX1/p∞ , Y 1/p∞Kd. It follows from Proposition 1.2 (ii) that the restriction
of G0 to PerfadR is isomorphic to G.

By abuse of notation we write φn = φn(X) = Xpn = (Xpn

1 , . . . ,Xpn

d ) so

that φ ∈ HomR(G(p
n−1)

0 ,G
(pn)
0 ) for any n ∈ Z. Similarly, if S ∈ AlgadR and

s = (σ1, . . . , σd) ∈ G(S) then we write sp = (σp1 , . . . , σ
p
d) = G(φ)(s). We define

the functor G♭0 = lim←ÐφG
(p−n)
0 ∶ AlgadR → Ab via

G♭0(S) = {(sn)n≥0 ∈∏
n≥0

G
(p−n)
0 (S) ∣ spn+1 = sn for all n ≥ 0}

and call G♭0 the perfection of G0. It comes with a natural transformation
G♭0 → G0 given by (sn)n≥0 ↦ s0 on S-valued points.
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Proposition 2.9. There is an isomorphism of functors G ○ (⋅)♭ ≅ G♭0. In
particular, G♭0 is represented by RJX1/p∞K. On PerfadR the natural transfor-
mation G♭0 → G0 is an isomorphism, i.e. the restriction of G♭0 to PerfadR is
given by the perfect formal group law G.

Proof. The first statement is simply the universal property of the projective
limit. That G♭0 is represented by RJX1/p∞K then follows from Proposition
1.2 (iii). If S ∈ PerfadR then the map G0(S♭) = G(S♭) ≅ G♭0(S) → G0(S) is
obtained by applying G0 to the projection S♭ → S which is an isomorphism
by Proposition 1.2 (i). We noted above that the restriction of G0 to PerfadR is
isomorphic to G, giving the final statement. Alternatively, it follows directly
from G ○ (⋅)♭ ≅ G♭0 because the restriction of (⋅)♭ to PerfadR is isomorphic to
the identity functor (cf. Proposition 1.2 (i)).

The role of the affine group scheme Spec(A) introduced before Theorem
2.7 can now be explained as follows. We continue to denote by G0 a d-
dimensional ordinary formal group law overR. For any integer n ≥ 0 consider
the n-th Frobenius kernel G0[φn] = ker(φn ∶ G0 → G

(pn)
0 ). Then G0[φn] is a

finite flat group scheme represented byRJXK/(Xpn) = RJXK/(Xpn

1 , . . . ,Xpn

d ).
The relative Frobenius RJXK/(Xpn+1)→ RJXK/(Xpn) can be identified with

the inclusion RJX1/pn+1K/(X) ⊂ RJX1/pn+1K/(X) and makes (G0[φn])n≥0
into a projective system. The limit

TφG0 = lim←Ð
n

G0[φn] = Spec(limÐ→
n

RJXK/(Xpn))

= Spec(RJX1/p∞K/(X)) = Spec(A)

is a commutative affine group scheme over R that we call the Frobenius-Tate
module of G0. The following result is then immediate.

Lemma 2.10. If G0 is a d-dimensional ordinary formal group law over R
then the following statements hold.

(i) We have TφG0 ≅ ker(G♭0 Ð→ G0) as functors on adic R-algebras,
viewed as abstract R-algebras on the left.

(ii) We have G♭0 ≅ limÐ→φ TφG
(pn)
0 as functors on discrete perfect R-algebras,

viewed as abstract R-algebras on the right. ◻

Now let G0 and H0 be ordinary formal group laws of dimensions d and
e over R, respectively, and write G and H if these are viewed as perfect
formal group laws. We wish to relate the group HomR(G,H) of homo-
morphisms of perfect formal group laws to the subgroup HomR(G0,H0) =
HomR(G,H) ∩ RJXKe of homomorphisms of ordinary formal group laws.
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The groups HomR(G0,H
(ph)
0 ) with h ≥ 0 form an inductive system with

injective transition maps

HomR(G0,H
(ph)
0 )→ HomR(G0,H

(ph+1)
0 ), f ↦ φ ○ f.

The injective group homomorphisms HomR(G0,H
(ph)
0 ) → HomR(G,H) de-

fined by f ↦ φ−h ○ f induce an injective group homomorphism

(13) limÐ→
h≥0

HomR(G0,H
(ph)
0 )Ð→ HomR(G,H).

Proposition 2.11. The group homomorphism (13) is bijective. More pre-
cisely, if f = (f1, . . . , fe) ∶ G → H is a non-zero homomorphism of perfect
formal group laws then ord(f) = p−h for some integer h and φh ○ f ∈ RJXKe.
In particular, φh ○ f ∶ G0 → H

(ph)
0 is a homomorphism of ordinary formal

group laws.

Proof. The injectivity of (13) was remarked above so that it suffices to prove
the statements about f ∶ G→H. Indeed, if h ≤ 0 then the statements imply
f ∈ HomR(G0,H0) and if h ≥ 0 then f lies in the image of (13), as well.

We emphasize that the asserted integrality property of f does not rely on
Theorem 1.7 and holds in any dimension. As we shall see, it is simply due to
the fact that the composition of f with a sufficiently high power of φ induces
a homomorphism between the Frobenius-Tate modules that commutes with
passage to the cokernels of Frobenius.

To make this precise choose n ∈ N sufficiently large so that ord(φn ○ f) =
pn ⋅ord(f) ≥ 1. Then g = φn○f ∈ HomR(G,H(p

n)) and the corresponding ho-
momorphism of R-algebras ψg ∶ RJZ1/p∞K→ RJX1/p∞K with Z = (Z1, . . . , Ze)
factors through a homomorphism

A′ = RJZ1/p∞K/(Z)→ A = RJX1/p∞K/(X).

By the construction of Frobenius-Tate modules this corresponds to a homo-

morphism of affine group schemes TφG0 → TφH
(pn)
0 .

Given m ∈ N we first compute the subalgebra Bm of A consisting of all
classes h + (X) satisfying

(14) h(G0(Xpm , Y )) ≡ h(Y ) mod (X,Y ).

It represents the cokernel of φm on TφG0 but we will not need this. If

1 ≤ i ≤ d and h = X1/pm

i then h(G0(Xpm , Y )) ≡ Y 1/pm

i = h(Y ) mod (X)
because G0(Xpm , Y ) ≡ Y mod (Xpm). This implies Am ⊆ Bm where Am =
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R[X1/pm]/(X) . We claim that Am = Bm.

Let h+(X) ∈ Bm and set ν = ord(h). In order to show h+(X) ∈ Am we may
assume 0 < ν ≤ 1. The congruence (14) is equivalent to h(G0(X,Y )) ≡ h(Y )
mod (X1/pm , Y ). Note that any homogeneous monomial in the expansion of
h̃(X,Y ) = h(G0(X,Y )) − h(Y ) then lies in (X1/pm , Y ), as well. If we write
h(X) = ∑α cαXα then ord(h̃) ≥ ν and

h̃ν(X,Y ) = ∑
∣α∣=ν

cα(
d

∏
j=1

(Xj + Yj)αj − Y α).

For α = (α1, . . . , αd) ∈ N[1p]
d we set vp(α) = min{vp(α1), . . . , vp(αd)} and

s = min{vp(α) ∣ cα ≠ 0 and ∣α∣ = ν}. Choose β ∈ N[1p]
d and 1 ≤ j0 ≤ d with

∣β∣ = ν, cβ ≠ 0 and vp(βj0) = s. Writing βj0 = ips we have i ∈ N ∖ pN and

claim that icβX
ps

j0
Y β−psej0 is one of the monomials in the expansion of h̃ν .

It clearly appears in the expansion of cβ(∏dj=1(Xj + Yj)βj − Y β). Let us

assume that it also appears in the expansion of cα(∏dj=1(Xj + Yj)αj − Y α)
where ∣α∣ = ν and cα ≠ 0. Then the monomial also appears in the expansion of
cα(Xj0 +Yj0)αj0 ∏j≠j0 Y

αj

j because among the variables X1, . . . ,Xd only Xj0

shows up. Writing αj0 = tpℓ with ℓ ∈ Z and t ∈ N∖pN the unique smallest pos-
itive exponent ofXj0 in the expansion of (Xj0+Yj0)αj0 is pℓ. By the minimal-

ity of s we must have ℓ = s and tcαX
ps

j0
Y
αj0
−ps

j0 ∏j≠j0 Y
αj

j = icβXps

j0
Y β−psej0 .

Since tcα and icβ are both non-zero in R the families of exponents coincide.
This gives α = β and implies our claim.

Since icβ ≠ 0 in R and since ∣β − psej(β)∣ = ν − ps < ν ≤ 1 the above monomial

lies in (X1/pm , Y ) if and only if ps ≥ 1/pm. By the minimality of s we get
hν + (X) ∈ Am ⊆ Bm and therefore h − hν + (X) ∈ Bm. We now proceed
inductively to get h + (X) ∈ Am after finitely many steps. Thus, Am = Bm
as claimed.

Similarly, A′m = R[Z1/pm]/(Z) is the subalgebra of A′ consisting of all

classes h + (Z) satisfying h̃(Z,Z ′) = h(H(p
n)

0 (Z,Z ′)) − h(Z) ∈ (Zpm , Z ′).
This condition implies h̃(g(X), g(Y )) ∈ (g(X)pm , g(Y )) ⊆ (Xpm , Y ) because
ord(g) ≥ 1. Since g(G0(X,Y )) =H(p

n)

0 (g(X), g(Y )) we obtain

h(g(Y )) ≡ h(H(p
n)

0 (g(X), g(Y ))) ≡ h(g(G0(X,Y )) mod (Xpm , Y ).

Thus, the homomorphism ψg ∶ A′ → A maps A′m into Am. In particular,

g
1/pm

i = ψg(X1/pm

i ) ∈ Am = R[X1/pm]/(X) which implies gi ∈ RJXK + (Xpm)
for any 1 ≤ i ≤ e. Since m ∈ N was arbitrary we get g ∈ RJXKe, i.e. g ∈
HomR(G0,H

(pn)
0 ). It is now a standard result that ord(g) = ps for some
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s ∈ N and that g(X1/ps) ∈ RJXKe (cf. [2], Theorem I.3.2 (ii)). Setting h = n−s
we obtain ord(f) = ph and φh ○ f = φ−s ○ g ∈ HomR(G0,H

(ph)
0 ).

Recall that a homomorphism f ∶ G0 → H0 of formal groups over R is called
an isogeny if the corresponding comorphism ψf ∶ RJZK→ RJXK is faithfully
flat and if its kernel is represented by a finite flat group scheme over R. In
this case G0 and H0 have the same dimension. If the augmentation ideal
of the Hopf algebra representing ker(f) is nilpotent then we call f a formal
isogeny. Let FGLR denote the category of ordinary formal group laws over
R, let F denote its class of formal isogenies and recall that we denote by
FGLperf

R the category of perfect formal group laws over R. By definition,

FGLR is a subcategory of FGLperf
R .

Corollary 2.12. (i) The inclusion FGLR ↪ FGLperf
R extends to a fully

faithful embedding FGLR[F−1] ⊆ FGLperf
R .

(ii) Two ordinary formal group laws G0 and H0 over R are isomorphic
as perfect formal group laws if and only if there is a formal isogeny

g ∶ G0 →H
(ph)
0 for some h ∈ N.

Proof. If f ∶ G0 → H0 is a formal isogeny then there is a natural number h

and a formal isogeny g ∶ H0 → G
(ph)
0 such that g ○ f = φh ∶ G0 → G

(ph)
0 (cf.

[9], Satz 5.25). In FGLperf
R the morphism φh is an isomorphism with inverse

φ−h. It follows that any element of F admits a left inverse in FGLperf
R , hence

is an isomorphism. The results in [9], Satz 5.25 and Satz 5.26, also imply
that F is a saturated, left multiplicative system.

By the universal property of the left localization there is a canonical func-
tor ι ∶ FGLR[F−1] → FGLperf

R which we claim is fully faithful. The set of
homomorphisms G0 →H0 in FGLR[F−1] is given as the colimit

limÐ→
g∶H0→H′0

HomR(G0,H
′
0)

running over all formal isogenies g ∶ H0 → H ′0 in FGLR. By construction,
the functor ι maps the class of the homomorphism f ∶ G0 → H ′0 indexed by
g ∶ H0 → H ′0 to g−1 ○ f ∈ HomR(G,H). The result in [9], Satz 5.25, implies

that the subsystem of all HomR(G0,H
(ph)
0 ) indexed by φh ∶H0 →H

(ph)
0 with

h ∈ N is cofinal. Thus, the set of homomorphisms G0 →H0 in FGLR[F−1] is
given by limÐ→h≥0HomR(G0,H

(ph)
0 ). By Proposition 2.11 the functor ι maps

it bijectively onto HomR(G,H). This proves (i) and the if part of (ii).

Conversely, given an isomorphim f ∶ G → H between the corresponding
perfect formal group laws we can write f = φ−h ○ g with h ∈ N and a ho-

momorphism g ∶ G0 → H
(ph)
0 of ordinary formal group laws. Then g is an
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isomorphism in FGLperf
R and it follows from (i) that g is an isomorphism in

FGLR[F−1]. This implies g ∈ F by [5], Proposition 7.1.20 (ii).

One can also give a slightly more direct proof. Namely, write f−1 = φ−i ○ γ
with i ∈ N and γ ∶ H0 → G

(pi)
0 . Setting g′ = γ(ph) we get g′ ○ g = φh+i. It will

follow from [9], Satz 5.25, that g is a formal isogeny once we can show that
G0 and H0 have the same dimension. To see this choose a maximal ideal
m ⊂ R and consider the factorization

(R/m)JXK
ψg′mÐ→ (R/m)JZK

ψgmÐ→ (R/m)JXK

of the homomorphism of R/m-algebras sending X to Xph+i . Note that ψgm
and ψg′m are both injective because they are restrictions of isomorphisms
between perfect formal power series rings. It follows that ψg′m is finite injec-
tive, hence preserves Krull dimensions. This gives dim(G0) = dim(H0) as
desired.

By construction, a category has the same objects as any of its localizations.
Combining Theorem 2.7 and Corollary 2.12 we therefore obtain the following
result.

Theorem 2.13. The category of one-dimensional perfect formal group laws
over R is the category of one-dimensional ordinary formal group laws over
R localized at the class of formal isogenies. ◻

Remark 2.14. The inclusion FGLR[F−1] ⊆ FGLperf
R in Corollary 2.12 (i)

is not surjective on objects of dimension at least two, i.e. there do exist
perfect formal group laws of dimension at least two which are not given by
ordinary formal power series (cf. [1], Corollary 4.19). It might still be an
equivalence of categories as this requires only essential surjectivity. However,
it is presently unknown whether every perfect formal group law of dimension
at least two is isomorphic to an ordinary formal group law.

References
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