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Introduction

1.1 What is K-theory

K-theory is a family of abelian groups

{Kn (C)}n627
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where C can be different kind of mathematical objects: a ring with unit, a topological space, a
scheme, a stack, a category...
For a ring R, these abelian groups are built out of finitely generated projective R-modules. For
a scheme X, they are built out of algebraic vector bundles over X. So in these settings K-theory
can be thought as a family of invariants studying these objects.
The Ky group is defined by describing generators and relations. In the case of rings, there
are also explicit definitions of the K; and Ky groups. The definition of higher K-groups uses



homotopical methods. The rough idea is that, given the object C, one constructs a topological
space K(C), called the K-space, and the the K-groups are defined as its homotopy groups

K, (C) = ma (K (C)).

Especially because homotopical methods are involved, K-theory is usually difficult to compute.
One of the most famous is Quillen’s computation of the K-groups of finite fields. Computational
difficulties aside, algebraic K-theory is important for its numerous connections with Number The-
ory, Geometric Topology and Algebraic Geometry, some of which we will explore in this seminar.

1.2 Some motivation and history

K-theory was first introduced by Grothendieck in the late '50s as part of his studies in Intersec-
tion Theory, where it played a central role in the formulation of the Grothendieck-Riemann-Roch
Theorem.

The first definition was that of the K-group of a scheme, K(X) (later denoted by Ky(X)),
with the K standing for “Klasse”. Given a scheme X, the K-group of X is the free abelian group
generated by the isomorphism classes [E], for E an algebraic vector bundle over X, modulo the

relations
[E] = [E'] + [E"]

for 0 - E' - E — E"” — 0 a short exact sequence of algebraic vector bundles over X.

In the affine case X = Spec(R), we get the definition of the K-group of a ring, K(R) (later
denoted by Ko(R)). In this case, an algebraic vector bundle over X is equivalent to a finitely
generated projective R-module and every short exact sequence splits. Thus, equivalently K(R) is
the free abelian group generated by the ismorphism classes [P], for P a finitely generated projective

R-module, modulo the relations
[P® P’ = [P]+ [P].

This is the explicit description of a universal construction, called group completion, applied to the
abelian monoid of isomorphism classes of finitely generated projective R-modules with the direct
sum.
After Grothendieck’s definition of the K-group for schemes, Atiyah and Bott applied the same
ideas in Algebraic Topology, replacing the scheme X with a topological space and applying group
completion to the abelian monoid of (real or complex) vector bundles over X with the direct sum,
obtaining the definition of topological K-theory. In the real case it is denoted by KO(X), while
in the complex case by KU(X). An important fact in the topological context is that real vector
bundles are classified in homotopy-theoretic terms: for X a connected paracompact topological

space, there exists a bijection '
VBRr(X)*? +— [X, BO(n)],

where the left hand side is the set of isomorphism classes of real vector bundles over X and the
right hand side is the set of homotopy classes of maps from X to the infinite real Grassmannian
of n-planes. A consequence of this is that we have a group isomorphism

KO(X) = [X,, BO).,

where X = X [[*, BO = lim | BO(n) and [_, _]« denotes the homotopy classes of pointed maps.
This suggests the following definitions. For n > 0, we define the real K-groups of X

KO™"(X) = KO(X"(Xy)) = [¥"(X4), BOL,



where X is the reduced suspension endofunctor on the homotopy category of pointed spaces, which
is left adjoint to the loop space functor €. Given a closed subspace A C X, we also define the real
relative K-groups of the pair (X, A), for n > 0,

KO™™(X,A) = KO™(C}),

where A, Ly X, — C; is a homotopy cofiber. Recall that a homotopy cofiber gives rise to a
homotopy cofiber sequence

AL X 505 2AL 2 NX, B0 D2 A,

and applying [ _, BO]. we obtain a long exact sequence. Thus, we have a long exact sequence of
real K-groups of X

o KO™2(A) - KO™Y(X,A) - KO™(X) = KO }(A) - KO°(X,A) = KO°(X) — KO°(A).

Now, a crucial result is Bott Periodicity Theorem , which states that there exists a weak homotopy

equivalence
BO ~ Q®*BO.

Using the adjunction ¥ 4 2, we obtain that the real K-groups are periodic of period 8. This
allows to extend the definition of real K-groups of X and of (X, A) also for positive indexes. It
can be proved that the corresponding family of functors {K O™}, ¢z satisfies all the axioms of a
generalized cohomology theory: it is homotopy invariant, the excision property holds and there
are long exact sequences associated to a pair (which is the long exact sequence above).

In the case of complex vector bundles similar results hold, replacing BO(n) with the infinite
complex Grassmannian of n-planes BU(n). There is also complex version of Bott Periodicity
Theorem, which in this case gives period 2.

The existence of higher topological K-groups, whose main property is to fit into long exact
sequences, gave rise to the question of whether similar phenomenona occurs for the Grothendieck
group of schemes (now referred to as algebraic K-theory, to distinguish it from the topological
version).

Initially, some explicit definitions of K; and K5 for a ring R were introduced by Bass and
Milnor rispectively, together with a relative version for the datum of an ideal I C R, which have
the property to fit into long exact sequences.

In the late 60 and early ’70s several definitions of higher algebraic K-groups were proposed,
but the one widely accepted was the one of Quillen. Quillen’s homotopical approach of introducing
a K-space as explained in the previous paragraph, is motivated by the fact that homotopy theory
of topological spaces gives a machinery to obtain long exact sequences: a fiber sequence induces a
long exact sequence on the homotopy groups.

In fact, there are several definitions of higher algebraic K-theory by Quillen. The first one,
which just defines the higher K-groups of a ring, constructs the K-space using a purely topological
costruction, called the 4-construction. This is a very ad-hoc construction, made with the purpose
of following the general homotopical approach, and with the aim of getting back the Ky, K; and
K of rings previously defined. But already from the first definition of Ky, it was suspected that
a definition of higher algebraic K-theory could be possible also for more general kind of objects
beyond rings and schemes, such as symmetric monoidal categories and exact categories. This
motivated Quillen to look for more general constructions and the main outcome is the K-space
associated to an exact category, obtained via the @-construction. It can be shown that it agrees
with the +-construction, via the $~1S construction for symmetric monoidal categories. Another
defintion of K-space is given by the Waldhausen S-constuction for Waldhausen categories, which
are a kind of categories with a notion of cofibrations and weak equivalences. All these constructions
are proven to give the same K-groups, when they are all simultaneously defined.



2 Overview of the seminar

The idea for this seminar is to study the main constructions in algebraic K-theory together with
some results connecting it to Algebraic Geometry and Number Theory.

We will start with Grothendieck’s definition of the Ky group of rings and schemes. Here we will
also see that these are in fact examples of a notion of Grothendieck group of symmetric monoidal
categories and exact categories.

Right after this we will explore the relation between the Ky group and the Chow ring of a smooth
algebraic variety over a field k: a consequence of the Grothendieck-Riemann-Roch Theorem allows
to prove that they are isomorphic, once we tensor with Q. This will take a couple of talks, since
we will start from the definition of the Chow group. Anyway, the idea for this part is not to give
many proofs, but rather to focus on the main steps and constructions that allow to reach the final
result.

Then, we will proceed with the explicit definitions of Bass’ K;(R) and Milnor’s K3(R), for a
ring R. Definitions and proofs of the results for this part only require some Linear Algebra and
Group Theory.

In the next four talks we study the various definitions of higher algebraic K-theory: the +-
construction, the @-construction and the S-construction. We will also at least sketch the proof
that we can recover the higher K-groups of a ring defined with the 4+-construction from the ones
defined with the @Q-construction. The first in this row of talks is a preliminary one, about the
classifying space of a category, which is a constructions that allows to transform a category into a
topological space. This is a fundamental notion for all the variuos definitions of the K-space.

Next, we will study some properties of higher algebraic K-theory. These properties regard
either the Q-construction or the S-construction.

Another talk is dedicated to present the ideas behind Quillen’s computation of the K-groups
of finite fields, one of the few computations of K-groups that are known until now.

Then, there are couple of proposals for some topics connecting algebraic K-theory to Number
Theory: a result stating the equivalence between the Kummer-Vandiver Conjeture and the van-
ishing of some K-groups of Z, or the Merkurjev-Suslin Theorem, which relates the K5 of a field to
some étale cohomology groups.

To conclude, we present a more modern perspective on the topic using the language of infinity
categories, which allows to view algebraic K-theory as a universal invariant.

3 List of the talks

3.1 Talk 0 (15/10/25): Introduction

(Linda)
I will present the topic of the seminar following the introduction above and briefly explain the
content of each talk.

3.2 Talk 1 (22/10/25): The Grothendieck group of rings and schemes

There are two main methods to define the Grothendieck group of some kind of given objects: it
is the free abelian group generated by the objects, modulo the relations generated either by a
monoidal operation on the objects, or by a notion of short exact sequences of objects.

The first method is the one underlying the definition of the group completion M~'M of an
abelian monoid M. Give the definition as a universal construction, that is, as the left adjoint
functor to the forgetful functor from the category of abelian groups to the one of abelian monoids.



Describe also its explicit construction with generators and relations | , §I1.1]. State (and
quickly prove) the properties of group completion listed in [ , §2 Prop. 1.1]. Remark that
the group completion of a semiring is a ring. Do some examples, such as the group completion
of: (N,+), (N,-), isomorphism classes of finite G-sets for a finite group G, isomorphism classes of
finite dimensional complex representations of a finite group G | , §2 Ex. 1.4, 1.5, 1.6].

Define the Ky group of a ring with unit R, as the group completion of the abelian monoid
P(R)%° of isomorphism classes of finitely generated projective R-modules, with the direct sum of
R-modules. Explain why we restrict to finitely generated R-modules via the Eilenberg swindle
trick. Describe the ring structure on Ko(R) in case R is commutative. Explain that Ky is a
functor from (commutative) rings to abelian groups (commutative rings) | , §11.2]. Do some
examples, such as: Ko(R) = Z for R a field or a PID or a local ring, Ko(R) =Z & CI(R) for R a
Dedekind domain [ , $IT Ex. 1.1, 1.2]. Present some useful reductions to compute the K of a
ring: Ko(R1 X Rg) = Ko(Rl) X Ko(Rz), Ko(hgl Rl) = Mi Ko(Ri), Ko(R) = Ko(R/I) for I C R
a nilpotent ideal, Morita invariance Ko(R) & Ko(Mat, (R)) | , 81T pg 75, 2.1.6, Lemma 2.2,
Ex. 2.7.2].

Now pass to the Ky group of schemes. As a motivation, start by rephrasing the definition K
of a ring, using short exact sequences | , §IT Def. 7.1, Ex 7.1.1]. Explain why this definition is
equivalent to the one above (all the short exact sequences split). Recall that, given R a commutative
ring, for X = Spec(R), the category of algebraic vector bundles VB(X) (finite locally free Ox-
modules) is equivalent to the category of finitely generated projective R-modules P(R) | ,
§I Ex. 5.1.2]. Define the Ky group of a scheme X, as the free abelian group generated by the
set of algebraic vector bundles VB(X) modulo the relations given by the short exact sequences

of Ox-modules | , Def. 7.1, Ex. 7.1.3]. Notice that this definition is not equivalent to the
group completion of the abelian monoid of isomorphism classes of algebraic vector bundles over
X. Describe the ring structure on Ko(X) | , §II 7.4.2]. Explain that K is a functor from

schemes to commutative rings.

We also briefly discuss these construction from a more abstract perspective, introducing a
categorical point of view. Notice that P(R)?° is the set of isomorphism classes of objects of P(R)
and that the monoidal structure on P(R)*° is induced by the symmetric monoidal structure on
P(R) given by the direct sum of R-modules. So, more generally, one can define the Ky group of
a symmetric monoidal category | , §IT Def. 5.1.2]. On the other hand, VB(X) is the set of
objects VB(X), which is an exact category (intuitively, a category that carries a notion of short
exact sequences). So, more generally, one can define the Ky group of an exact category | ,
§IT Def. 7.1]. Notice that an exact category is also symmetric monoidal category with monoidal
product given by the direct sum. In case it is also split exact, then the two constructions of Ky
coincide | , SIT Ex. 7.1.1]. We start to introduce this because this point of view is fundamental
for the construction of higher algebraic K-theory, but we can be not too precise for the moment.
In particular you can avoid to give the precise definitions of symmetric monoidal categories and
exact categories (for these we can simply think at abelian categories, but notice that P(R) is not
abelian but just an exact category!).

Define the Gy-group of a noetherian ring and of a noetherian scheme [ , §II Def. 6.2,
Def. 6.2.5]. Describe the Cartan homomorphism from Ky to Gy in both cases. Mention the
theorem stating that the Cartan homomorphism is a ring isomorphism in case of separated regular
noetherian schemes | , §IT Thm. 8.2]. Also discuss briefly the proof: the key fact is a theorem
of Serre stating that, for a regular scheme X, any coherent Ox-module has a finite resolution of
vector bundles over X. The advantage of introducing the Gy-group is that sometimes it has better
properties then the Ky group, for example it is possible to define a pushforward for proper maps.
Then, for regular schemes, the last theorem allows to deduce the same properties for the Ky-group.
We will need this to discuss the relation between K-theory and the Chow group in the next talks.



3.3 Talk 2 (29/10/25): The Chow group and the Chern classes

The aim for the next two talks is to study the relation between Ky(X) and CH(X), the Chow
group of a scheme X, which is an invariant built out of the closed irreducible subschemes. The
final goal is to look at the following result: for X a smooth algebraic variety over a field k, there
exists a ring homomorphism, called the Chern character map,

ch: Ko(X) = CH(X) ®Q,

which is an isomorphism of Q-algebras, after tensoring with Q. No prerequisites will be assumed,
so we start with the definition of the Chow group. In this first talk, we start introducing the Chow
group, some of its properties and the Chern classes of algebraic vector bundles, which we will need
to define the Chern Character.

Given k a field, by an algebraic variety over k we mean a finite type, separated k-scheme.
Define CH;(X), the Chow group of dimension i of a variety X, as the free group generated by
closed irreducible subvarietes Z C X of dimension ¢, whose elements are called algebraic cycles,
modulo rational equivalence | , §1.3]. Rational equivalence may be defined in two equivalent
ways: as the one generated by divisors of a rational function on a i + 1-dimensional subvariety
of X | , §1.4], or as the relation induced by “P!-homotopy” | , §1.6, Prop. 1.6] (see also
[ , §1.2.2]). Taking the direct sum over i, we get the Chow group of X

CH(X) =P CHi(X),
i>0

which, by construction, is graded by dimension. In case X is smooth and equidimensional of
dimension d, any irreducible subvariety of dimension ¢ has codimension d —¢. This allows to grade
the Chow group also by codimension

d
CH*(X) =P CH (X),

where CH*(X) = CHy_;(X). With these hypothesis on X, this is just a reindexing of the
grading. We will keep the convention of the grading by codimension because it is more convenient.
For f: X — Y a proper morphism, we have group homomorphisms

called pushforward maps | , 81.4]. For f: X — Y a flat morphism of smooth schemes, we
have a graded group homomorphism

f* L CHY(Y) —» CH*(X),

called the pullback map | , §1.7]. For X smooth, Fulton proved in [ , §6] that CH*(X) has
a structure of graded ring satisfying a number of properties, among which the projection formula

fe(f*(a)b) = af.(b).

The product is called is called intersection product because in good cases it is indeed given by
the intersection of subvarieties, taking account of a multiplicity. More precisely, given Y C X an
irreducible subvariety, with generic point € Y, the multiplicity of Y in X is the positive integer

m(Y; X) = lenghtoy, (Ov.),



and m(Y; X)[Y] is the algebraic cycle associate to'Y | , §1.5]. For two irreducible subvarieties
Z, W C X that intersect properly, that is, all the irreducible components T of ZNW are such that
codimxT = codimxV + codimx W, the intersection product of the corresponding classes is given
by
[ZW] = m(T;Z,W)[T],
TCZNW

where the sum runs over all the irreducible components T of ZNW, and m(T; Z, W) is a positive
integer called intersection multiplicity at T. These in general are not just the multiplicities m(T; X)
above, but one has to take in account of some correction terms, which are expressed in Serre’s Tor

formula:
d

m(T; 2,W) =Y (~D)ilenghto, , (Tor, ™ (07,0, Ow.a)),
i=0
where x € T is the generic point | , Thm. 2.7]. Notice that truncating this formula to ¢ = 0
we get m(T'; X). The peculiarity of rational equivalence consists in Chow’s moving lemma, which
states that, given any two closed irreducible subvarieties Z, W C X, there always exists another
closed irreducible subvariety Z' C X such that Z is rational equivalent to Z' and Z’ and W
intersect properly, so the above formula completely describes the intersection product. We will see
that Serre’s Tor formula appears very natural when compared with the product in Ko(X).

The next tool we need to discuss are the Chern classes. From now on X is always a smooth
algebraic variety over k. Define the first Chern class of a line bundle L over X, ¢;(L) € CH(X)
[ , §1.4]. Tt doesn’t depend on the isomorphism class of L, so it determines a function on the
Picard group of X

c1 : Pie(X) — CHY (X)),

which is nothing but the isomorphism between the Cartier divisors and the Weil divisors, since the
rational equivalence on codimension 1 cycles is exactly the equivalence induced by principal Weil
divisors [ , Thm. 11.40] (see also | , §I Construction 5.8]). This isomorphism commutes
with pullbacks. The crucial result that allows to define Chern classes is the Projective Bundle
Formula. Given E an algebraic vector bundle over X of rank n, consider ¢ : P(E) — X the
projectivization of F | , §8.8]. Consider the first Chern class of Op(g)(—1), the tautological
line bundle on P(E),
T = Cl(O[P(E)(—l)) S CHl(P(E))

The Projective Bundle Formula states that CH*(P(F)) is a free module over CH*(X) of rank n,
via ¢* : CH*(X) — CH*(P(E)), generated by the elements 1,z,22,...,2" 1. Thus, we have the
relation

"+ Z q*(a;)z" " =0,
i=1

where o; € CH'(X) are uniquely determined [ , Thm. 5.9]. The Chern classes of E, ¢;(F) €
CHY(X), for i > 1, are defined as | , Def. 5.10]
() ::{ai fori.:L...,n
0 for i > n.

Notice that, for a line bundle L, the defintion of ¢;(L) coincides with the previous one. The total
Chern class of E is defined as

n

o(B) =1+ ¢(E) e CH*(X).

i=1



It has the following properties: it commutes with pullbacks and it holds the Whitney formula
c(E) = c(E')c(E"),

for any 0 - E' — E — E” — 0 short exact sequence of algebraic vector bundles over X | ,
Thm. 5.3]. Notice that ¢(E) is invertible in CH*(X) with respect to the product structure,
because is 1 in degree 0. The Whitney formula implies that we have a group homomorphism c :
Ky(X) = CH*(X) (considering the additive structure on Ky(X) and the multiplicative structure
on CH*(X)), which is not a ring homomorphism. By projecting on components, we also have the
functions (which are not group homomorphisms)

¢t Ko(X) — CHY(X).

3.4 Talk 3 (05/11/25): The Chern character isomorphism

This talk is the follow up of the previous one. We will define the Chern character homomorphism
and use (a consequence of) the Grothendieck-Riemann-Roch Theorem to deduce that it is an
isomorphism of Q-algebras after tensoring with Q.

In this talk X is always a smooth algebraic variety over k. Recall from Talk 1 that we have the
Cartan isomorphism Go(X) = Ko(X). In the last talk we constructed the Chern classes, which
are functions Ko(X) — CH*(X). Composing with the Cartan isomorphism, we can see the Chern
classes as functions

ci: Go(X) — CH'(X).
Recall that they are not group homomorphism, but now we will see that they induce a group
homomorphism on the i*"-graded part of a filtration on Go(X). For any Z C X irreducible closed
subvariety, the coherent Ox-module Oz = Ox/Zz, where Iz is the ideal defining Z, gives an
element [Oz] € Go(X). Define the the coniveau or topological filtration on Go(X)
- CFPGo(X) C Ff

top top

Go(X) c---C Go(X),

such that F{, Go(X) is generated by the classes [F], for F the coherent Ox-module such that

codimx (supp(F)) > i. Equivalently, F{, Go(X) is the subgroup of Go(X) generated by the classes

[Oz], for Z C X irreducible closed subvariety with codimxZ > i | , Ex. 15.1.5]. Thus the
ith-graded part Gr'Go(X) = F},,Go(X)/Fii Go(X) is generated by the classes [Oz], for Z C X

irreducible closed subvariety with codimx Z = i. It holds that if ), nyZ) is an algebraic cycle of
codimension i, that is codimx Z;, = i for each k, such that Y, ny[Z;] = 0 in CH*(X), then

> mkl0z,] € Fii'Go(X).
k

This implies that we have a group homomorphism
cl: CHY(X) — gr'Go(X),

such that [Z] — [Ogz].
The Grothendieck-Riemann-Roch Theorem implies that, if codimx Z = i, then
([02) =0 ifj<i (1)
ci([0z]) = (-1)'(i - 1)![Z].

oo



It follows that the i** Chern class induces a function
¢ griGo(X) — CHY(X),
which is also proven to be a group homomorphism. By definition of ¢/ and by 1, we see that

cloc; = (—1)"(i — 1)lid
ciocl = (—1)"(i — 1)lid.

Hence, tensoring with Q, ¢; induces an isomorphism of Q-vector spaces
i ®Q:griGo(X)®Q = CH'(X)®Q,

with inverse ¢l ® Q.

Now, we construct the Chern character. Recall that the total Chern class ¢ : Ko(X) - CH*(X)
is just a group homomorphism, but not a ring homomorphism. The Chern character recombines
the Chern classes in order to get a ring homomorphism. The crucial result to define the Chern
character is the Splitting Principle | , Thm. 5.9]. It states that, given E an algebraic vector
bundle over X of rank n, there exists f : FI(E) — X a morphism of smooth varieties over k, such
that the algebraic vector bundle f*FE over FI(E) is completely splitted, that is, it has a filtration

0=FyCF,CEyC---CFE,=f"F

where E; are algebraic vector bundles over FI(E) of rank i. The flag variety FI(E) is obtained tak-
ing the projectivization of E, q : P(E) — X, which is such that its tautological bundle Op(g)(—1) is
a subbundle of ¢*F' | , Eq. 13.8.1], and iterating the construction considering P(E) with the
quotient bundle ¢*E/Op(g)(—1), which has rank n — 1. The successive quotients L; == E;/E; 1,
for i =1,...,n, are line bundles over FI(E). In Ko(FI(E)) we have that

[fPE] = [La] + - + [Lal.
By the Whitney Formula we get that

ci(f*[E]) = ei(ci([La])s - - -y ea([Ln])),

where e; is the i*" elementary symmetric polynomial in n variables. Notice that, since FI(E) is
obtained as an iteration of projectivizations of algebraic vector bundles, by the Projective Bundle
Formula, we have that f*: CH*(X) — CH*(FI(FE)) is injective. Since ¢;(f*[E]) = f*¢;([E]), then
we can see the elementary symmetric polynomials in ¢;1([L1]), ..., c1([Ly]) as elements in CH*(X).
Recall that any symmetric polynomial in some coefficient ring R is uniquely a polynomial with
coefficients in R of the elementary symmetric polynomials. Consider the symmetric polynomial in
c1([L1]), - - -, e1([Ly]) with coefficients in Q

S enp(erlial) = X el + -+ eallZal)) = 3 2 Nier (L)) ea([Ea)
k=1

i>0 i>0

where N; is the i*" power sum symmetric polynomial. Notice that this is a polynomial because the
degree is bounded by the dimension of FI(E)). It follows from the above discussion that it can be
seen as an element of CH*(X) ® Q and it defines ch([E]), the Chern character of E. This defines
a ring homomorphism

ch: Ko(X) - CH*(X) ® Q,



which we can also see as a ring homomorphism from Gy (X) by precomposing with the Cartan ho-
momorphism. Denote by ch; the projection on CH*(X)®Q. Notice that the symmetric polynomial
N, is expressed as a polynomial of the elementary symmetric polynomials as

N; = r;e; —|—Q(€1,...,€n),

for some r; € Q* and @ a polynomial in n — 1 variables with coefficients in Q. This, together
with 1, shows that ch; on FZOPGO(X) is a non zero rational multiple of ¢;. The fact that ¢; ® Q :

GriGy(X) ® Q — CH(X) ® Q is an isomorphism implies that

is also an isomorphism [ , Ex. 15.2.16].

3.5 Talk 4 (12/11/25): K; and K, of a ring.

In this chapter we study Bass’ definition of K;(R) and Milnor’s definition of K3(R) for R a ring
with unit. These are very explicit abelian groups, whose definition and related results only use
some Linear Algebra and Group Theory. They were considered the correct notion of higher K-
groups of R because they fit in some exact sequences together with the Ky(R). The Quillen’s
definition of higher K-groups of R (for all n > 0), that we will see in the next talks, is much
more abstract, but is proven to coincide with these low degree K-groups. An interesting feature of
these explicit construction of K;(R) and K3(R) is that, despite from what may appear from their
very first definition, they are also related to the category P(R) of finitely generated projective
R-modules. In fact, they only depend on it. In particular, notice that this allows to easily deduce
the Morita invariance property also for K (R) and Ka(R).

Define the Ki group of a ring with unit R, as the abelianization of GL(R) = lim GL,(R)
[ , §III Def. 1.1]. Explain that K; is a functor from rings to abelian groups. Present
Withead’s Lemma, which provides an explicit description of the commutator subgroup of GL(R):

it is the subgroup E(R) C GL(R) generated by the elementary matrices | , §III Lemma
1.3.3] (see also [ , Prop. 1.5]). Do some examples, such as: K;(F) = F*, for F a field, and
K\(Z)=7*={1,-1} | , §IIT Ex. 1.3.5]. Discuss the homological interpretation of K;(R):

K,(R) 2 Hy(GL(R),Z),

where the right hand side is the first group homology of GL(R) acting trivially on Z | , SIIT
1.6.2]. From this follows the relation between K;(R) and finitely generated projective R-modules:

Kl(R) = hél’l Hl(Aut(P),Z),

Pe(P
where tP is some category defined from P(R) | , §Cor. 1.6.3].

Now pass to the K5. Define the K5 group of a ring with unit R, the kernel of the group
homomorphism St(R) — E(R), where St(R) is the Steinberg group [ , §III Def. 5.2]. Present

Steinberg’s theorem, which proves that Ko(R) C St(R) is the center, hence it is an abelian group
[ , §IIT Thm. 5.2.1]. Explain that K5 is a functor from rings to abelian groups. Discuss the
homological interpretation of K»(R):

K>(R) = Hy(E(R),Z),

where the right hand side is the second homology group of E(R) acting trivially on Z. This follows
from the theory of central extensions, since St(R) is the universal central extension of E(R) | )
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§IIT Thm 5.5] (see also | , Cor. 1.12]). From this follows the relation between K5(R) and the
finitely generated projective R-modules:

Ky(R) = lim Hy([Aut(P), Aut(P)],Z),
PectP
where the right hand side is the second group homology of the commutator subgroup of Aut(P)
acting trivially on Z | , 811 Prop. 5.6]. Do some example, such as: K5(Z) is cyclic of order
2 , SIIT Ex. 5.2.2], Ko(F)=F* @ F*/ <2 ® (1 — )|z € F*\ {1} > (this is Matsumoto’s
Theorem | , §IIT Thm. 6.1], which inspired the definition of Milnor’s K-theory).

To conclude we see how these groups fit in a long exact sequence together with Ky(R). Define
the relative versions of these groups K;(R,I) and K3(R,I), for the datum of an ideal I C R
[ , §ITT Def. 2.2, Def. 5.7]. Discuss the existence of an exact sequence | , §IIT Prop. 2.3,
Thm. 5.7.1]

K3(R,I) —— K3(R) —— Ky(R/I)

c >

Ki(R,I) — K;i(R) —— K (R/I)

c >

Ky(R,I) —— Ko(R) —— Ko(R/I),
where Ko(R,I) = Ky(I) is the Ky group of an ideal, defined in [ , §IT Exercise 2.3].

3.6 Talk 5 (19/11/25): The classifying space of a small category

This is a preliminary talk for the next three, where we will see several definitions of higher K-
theory: Quillen’s +-construction, Quillen’s Q-construction and Waldhausen’s S-construction. In
these definitions is crucial the categorical point of view already glimpsed in Talk 1, where we
saw the definitions of the K group of a symmetric monoidal category and of an exact category.
Analogously, higher K-theory groups are invariants associated to some kind of categories. All
these definitions of higher K-theory follow a general recipe: given some kind of category C, ones
construct a topological space (in fact, a CW-complex) K(C), called the K-space, and the K-theory
groups are defined as its homotopy groups:

K,(C) =m,(K(C)) forn>0.

The tool that allows to produce a topological space starting from a category is the classifying space
construction.

The classifying space construction consists in two steps, passing through simplicial sets. Recall
the definitions of the category of simplicial objects A, the category of simplicial sets SSet =
Psh(A, Set) and a simplicial object in a category C, A°? — C. We have the examples of the
simplicial object in small categories and in topological spaces

Cat + A°? — Top.
A general theorem in category theory guarantees that these functors factor through the Yoneda
embedding Y : A°? — SSet and that the second functor in the decomposition admits a right
adjoint. So we obtain all the functors in the diagram below:
A°P
/ ly\
||

h
Cat SSet Top,
N Sing
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called, h the homotopy category, N the nerve, | _| the geometric realization and Sing the singular
simplex functor. For explicit descriptions of the nerve and geometric realization functors see | ,
§IV Def. 3.1.4]. The classifying space is the composition of the nerve and geometric realization
construction:

BC = |NC|.

For an explicit description of BC see | , 8V Recipe 3.1.1].
Do the example of BG the classifying space of a group G. This is a model for the Eilenberg-Mac
lane space K (G, 1), that is, its homotopy groups are such that 71 (BG) = G and 7, (BG) = 0 for any

n#1] , 8IV Ex. 3.1.2]. These properties characterize BG up to homotopy equivalences. Do
the example of BM the classifying space of a monoid M and the property that 71 (BM) = M~*M
[ , §IV Ex. 3.4.2].

It’s interesting to see how some categorical properties get translated into topological proper-
ties. For example, a category with an initial (or final) object is such that its classifying space is
contractible | , 8IV Ex. 3.2.2]. A functor induces a cellular map on the classifying spaces
and a natural transformation of functors induces an homotopy between the associated maps. As a
consequence, a pair of adjoint functors induces a pair of homotopy inverse maps | , §IV 3.2].

To conclude, present Quillen’s Theorems A and B | , §IV Thm. 3.7, Thm. 3.8]. Theorem
A gives sufficient conditions for a functor to induce an homotopy equivalence on the classifying
spaces. Theorem B describes, under certain hypothesis, the homotopy fiber of the map induced
by a functor on the classifying spaces as the classifying space of a category. For a definition of
homotopy fiber look at | , 81V, 1.2]. These results will be useful later, for example to prove
the “4 = @” Theorem.

3.7 Talk 6 (26/11/25): The Quillen + and S~'S-constructions

In this talk we will construct a K-theory space K(R) associated to a ring with unit R, whose
homotopy groups define the K-groups of R

Kn(R) = Wn(K<R))a

such that Ky(R), K;(R) and K3(R) coincide with the ones already defined.

Quillen’s first approach to construct K (R) was to start from BGL(R), the classifying space of
the group GL(R) = lim GLy(R), and modify it ad hoc, via the so called +-construction, so that
its low degrees homotopy groups coincide with the low degrees K-groups of R. In the next talk
we will see that the K-groups obtained applying the Q-construction to the exact category P(R) of
finitely generated projective R-modules coincides with the one defined via the +-construction (the
“+ = @” Theorem). This comparison theorem is actually a consequence of a more general one
that compares the Q-construction with the S~!S-construction for symmetric monoidal categories,
which can be thought as a categorical version of group completion. So, in this talk we will also
study the S~1S construction and see its connection with the -+-construction.

Define the +-construction for the datum of a connected based C'W-complex X and a perfect
normal subgroup P C m(X) | , §IV Def. 1.4.1]. It is a purely topological construction
that determines, up to homotopy equivalences, another connected based CW-complex X+ with
an acyclic map X — X7, such that m(X*) = 71(X)/P. A theorem of Quillen guarantees the
existence of X+ and its universal property, up to homotopy equivalence | , §IV Thm. 1.5].
The proof is purely topological: it’s obtained by attaching in an appropriate way some 2-cells and
3-cells to X (you don’t need to give a proof, but in case you are interested, look at | , Thm.
2.1]). Then, applying this construction to X = BGL(R) and P = E(R) C GL(R) we obtain the
CW-complex BGL(R)" such that w1 (BGL(R)") = GL(R)/E(R) = K;(R). The fact that the
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map BGL(R) — BGL(R™) is acyclic also guarantees that ma BGL(R)* & Hy(E(R),Z) = Ko(R)
[ , 8IV Prop. 1.7] (see also | , Prop 2.5, Cor 2.6]). With this description we also obtain
the homological interpretation of K3(R)

Ks3(R) = m3(BGL(R)") = Hs(St(R), Z),

where the right hand side is the third homology group of E(R) acting trivially on Z [ , Cor.
2.6]. Notice that to explain all this you need to first recall the topological notions of homotopy
fiber, acyclic space and acyclic maps | , §IV, 1.2, Def. 1.3, Def. 1.4].

To recover also Ky(R), one defines the K-space of R as
K(R) = Ko(R) x BGL(R)™,

the disjoin union of copies of BGL(R)" indexed on Ko(R) | , §IV Def. 1.1.1].

Now pass to the S™1S construction for symmetric monoidal categories. First recall the defini-
tion of a symmetric monoidal category S [ , §IT Def. 5.1]. Notice that BS is an homotopy
associative and commutative h-space, that is, a monoid in the homotopy category of topological
spaces, and so mo(BS) is an abelian monoid. | , §IV, 4]. Define the category S=19 | ,
§IV Def. 4.2, Rmk. 4.2.2]. This can be thought as a categorical version of the group completion
construction. Describe its symmetric monoidal structure and notice that mo(BS~1S) is an abelian

group | , IV Rmk. 4.2.2]. In case every morphism in S is an isomorphism (if it is not, we
can take ¢s0S the subcategory of S given by the isomorphisms | , SIV Def. 4.1]), define the
K-space of S

K(S):=BS7'S,

which is a CW-complex based at the identity, and the K-groups of S for any integer n > 0
K, (S) = m,(K(9)).

Explain that a monoidal functor induces group homomorphisms on the K-groups | , SIV Def.
4.3]. Prove that Ko(S) = mo(BS~1S9) is the group completion of the abelian monoid my(BS) and
deduce that Ky(S) coincides with the Grothendieck’s group of a symmetric monoidal category
defined in Talk 1 [ , §IV Lemma 4.3.1].

The relation with the 4+-construction is described in | , §IV Cor. 4.11.1]: for S = isoP(R),
the connected component of the identity of BS~1S is homotopically equivalent to BGL(R)T. In
other words,

BS™'S ~ Ky(R) x BGL(R)* = K(R).

Sketch the proof of this (see also | , Thm. 7.4]).

3.8 Talk 7 (03/12/25): The Quillen Q-construction and the “+ = @Q”
Theorem

In this talk we study the Quillen @Q-construction that associates to an exact category A another
category QA. This is used to define a K-theory space taking the classifying space, and hence
K-groups taking homotopy groups. This is the generalization of the Grothendieck group of an
exact category that we roughly discussed in Talk 1. Moreover, analogously to the Grothendieck
groups, it holds that for split exact categories the definitions of K-groups via the S!S and Q-
constructions coincide. Applying it to the category P(R) of finitely generated projective modules,
we obtain the “+ = ” Theorem.

First recall the definition of an exact category A [ , §IT Def. 7.0]. Define the category
QA | , §IV Def. 6.1]. Prove that its classifying space BQA is a connected CTW-complex such
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that 71 (BQA) = Ky(A), where the right hand side is the Grothendieck group of an exact category
defined in Talk 1 [ , §IV Prop. 6.2]. This motivates the definition of the K-space of A:

K(A) = QBQA,
and the K-groups of A, for any integer n > 0,
K, (A) =7m,(K(A)).

Explain that an exact functor induces group homomorphisms on the K-groups | , §IV Def.
6.3]. Applying this to certain exact categories, we obtain the K and G-groups of rings and schemes
[ , §IV Def. 6.3.2, Def. 6.3.3, Def. 6.3.4].

Now the goal is to prove | , §IV Thm. 7.1] (see also [ , Thm 7.7]), which states that
if A is a split exact category and S = isoA, then there exists an homotopy equivalence

QBQA~ BS™!S.
Taking homotopy groups, it follows that, for any integer n > 0,
K, (A) =2 K,(S).

Applying this to A = P(R), we get the “+ = @” Theorem | , §IV Cor. 7.2], which states the
existence of an homotopy equivalence

QBQP(R) ~ Ky(R) x BGL(R)*,

and hence that the different definitions of K-theory of rings coincide.

3.9 Talk 8 (10/12/25): The Waldhausen S-construction

In this talk we present the third construction of higher algebraic K-theory: the Waldhausen S-
construction. This construction is applied to Waldhausen categories, which are catgeories with a
notion of cofibrations and weak equivalences. The reference for this is | , §IV, 8].

This construction is probably useful to discuss the localization sequence of Thomason and
Throbaugh | ] and the modern definition of K-theory of stable infinity categories.

3.10 Talk 9 (17/12/25): Properties of higher algebraic K-theory

In this talk we present some properties of higher K-theory of abstract exact or Waldhausen cat-
egories. The statement of these properties often sounds quite abstract and technical, but, on the
other hand, their applications to the examples of G and K-theory of schemes consist in some typ-
ical properties of a cohomology theory. This should convince us that the complicated Quillen and
Waldhausen constructions described in Talks 7 and 8 actually give rise to good theories.

The idea for this talk is not to give a detailed exposition of the proofs, but rather to have
an overview of the properties, from the general statements to their applications to examples,
underlying which results can be first obtained in the easier context of exact categories, what are
their limitations and how the Waldhausen context helps in solving them.

We follow | , §V]. In blue there are some suggestions for the exposition or what to say
about proofs.
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1. Additivity

This property can be formulated with the same statement both for exact or Waldhausen
categories. You can restrict to the exact setting and mention that analogous defintions and
results hold in the Waldhausen context. First recall that an exact functor F' between exact or
Waldhausen categories induces a map between the K-space (for the Quillen or Waldhausen
construction respectively), and hence group homomorphisms F, on the K-groups. To state
the theorem, we need the definition of a short exact sequence of exact functors | , Def.
1.1]. The Additivity Theorem is | , Thm. 1.5]. It states that, given a short exact
sequence of exact functors 0 - F' — F — F"" — 0, then F, = F] + F'.

If you want to tell something about the proof, you can discuss the idea of considering the
diagram described there. To do that, you need to talk about the Universal Example | ,
§1.1.1].

The Additivity Theorem immediately extends to finite long exact sequences (| , Cor.
1.2.1)).

Applications

The main application of the Additivity Theorem is the Projective Bundle Formula | ,
Thm. 1.5]. It states that for any quasi-projective scheme X and £ an algebraic vector bundle
on X of rank r, there is a ring isomorphism K, (X)[T]/(T7!) = K, (P(£)).

In the proof one writes down a finite long exact sequence of exact functors. This is the main
point where Additivity Theorem is used. Also, notice that here K,(X) is considered with
his ring structure, which was not mentioned yet in the previous talks (look at | , 81V,
Ex. 6.6.5])

2. Resolution
There are different Resoution Theorems, depending on the context in which they are formu-
lated. In the context of exact categories, there is the Resolution Theorem | , Thm. 3.1].
Roughly, it states that, given P C H a full exact subcategory of an exact category, such that
each object in H has a P-resolution, then K, (P) = K. (H).

The proof is not so difficult, but abstract. Maybe there is no time to present it.

Applications

Recall that a theorem of Serre states that, for any X separated noetherian scheme, any
coherent sheaf admits a finite resolution of algebraic vector bundles. Then, by Resolution
Theorem, it immediately follows that, with these hypothesis on X, G, (X) & K, (X) | ,
Thm. 3.4]. This generalizes the particular case Go(X) = K¢(X), which was already discussed
in Talk 1. There are also the following interesting applications of the Resolution Theorem.
Let f: X — Y be a morphism of noetherian schemes of finite flat dimension. There exist a

pullback (or base change) map on G-theory f*: G.(Y) = G.(X) | , §3.6] and, if f is
proper, a pushforward (or transfer) map on K-theory f, : Kp(X) — K,(Y) | , Prop.
3.7.1]. Moreover, some Base Change Formula and Projection formula hold [ , Thm.
3.7.2, Cor 3.7.3].

Maybe there is no time to talk much about pullback and pushforward maps and their formu-
las, but are interesting to mention because they are typical features of a cohomology theory.

3. Devissage
This is a property for Quillen K-theory of abelian categories. The Devissage Theorem is
[ , Thm. 4.1]. Roughly, it states that, for A C B an inclusion of abelian categories,
such that each object in B admits a filtration with subquotients in A, then K, (A) = K. (B).
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The proof should be not too hard. One should remember the definition of the Q-construction
and use a couple of facts about the homotopy theory of the classifying space discussed in
Talk 5.

Applications

The Devissage Theorem is usually a tool that allows to perform computations of K-groups.
For example, an immediate consequence is that G-theory of rings doesn’t see nilpotent el-
ements, i.e. Gyu(R) & G.(R/I) for any I C R nilpotent ideal. An important application
of Devissage Theorem is that, given Z C X a closed subscheme of a noetherian scheme,
then G.(Z) = K.(M(Z)) 2 K.(Mz(X)), where Mz (X) is the abelian category of coherent
sheaves on X with support in Z [Weil3, Ex. 4.3].

The case of schemes is an exercise in the book, but the proof should be analogue to the one
for rings, which is explained in [Weil3, App. 4.4].

4. Localization
There are different Localization Theorems, depending on the context in which they are
formulated. In the context of abelian categories, there is the Abelian Localization Theorem
[Weil3, Thm. 5.1]. It states that for B C A a Serre subcategory of a small abelian category,
there is an homotopy fibration sequence K(B) — K(A) — A/B, and hence there is a long
exact sequence of K-groups.

Maybe just recall the definition of a Serre subcategory. The proof is quite long and technical,
you can avoid it.

Applications

From the Abelian Localization Theorem applied to Mz(X) C M(X) and the application
to Devissage Theorem, it immediately follows the localization sequence for the G-theory of
schemes [Weil3, Ex.6.11]. It states that, given Z C X a closed subscheme of a noetherian
scheme with open complement U, there is a long exact sequence

e Gp(2) 5 Gp(X) =2 GuU) =5 Gpoa(Z2) — ..

ending with Go(Z) — GO(X) — Go(U) — 0.

What about a localization sequence for K-theory of schemes? This should be one of the
main results in Thomason-Trobaugh’s article [Weil3, Thm. 7.6], which uses the Waldhausen
context applied to perfect complexes. I still need to understand what are the issues for
K-theory in the exact context and how the Waldhausen context helps in solving them.

3.11 Talk 10 (07/01/26): Computation of the K-theory of finite fields

In this talk we present Quillen’s computation of K-theory of finite fields. The higher K-theory
groups of a finite field F, are completely determined [Weil3, §IV Cor. 1.13]: for n > 1

Z)(¢"—1) n=2i—1

0 n even

Ko(F,) = {

The computation is based on the +-construction and requires the construction of some operations
on K-theory, which are discussed in [Weil3, §IV, 5].
Another reference for this are the notes K-theory of finite fields.
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https://homepages.math.uic.edu/~mholmb2/Ktheofin.pdf

3.12 Talk 11 (14/01/26): The Kummer-Vandiver Conjecture/The Merkurjev-
Suslin Theorem

There are two proposals for this talk, both related to some topic in Number Theory.

One proposal is to present the equivalence between the Kummer-Vandiver Conjecture and the
vanishing of some K-groups of Z. The Kummer-Vandiver Conjecture states that, given a prime p,
the class number of the maximal real subfield of the p’-cyclotomic field is not divisible by p. In
[ ] it is proven that this is equivalent to the vanishing of all the groups Ky, (Z), for n > 1.

The other proposal is to present the Merkurjev-Suslin Theorem | , Thm. 8.5], which
establishes the group isomorphism, for a field F' and an integer n > 0,

Ko(F) @ Z/nZ = B, (F, u22).

3.13 Talk 12 (21/01/26): Universality of algebraic K-theory

In this talk we present algebraic K-theory from a more modern point of view using the language
of infinity categories. The advantage of this point of view is that it is possible to formulate a
universal property for algebraic K-theory. A reference for this are the Lecture Notes on Algebraic
K-theory.
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