

Quillen Q -Construction and the “ $+ = Q$ ” Theorem

Louisa Bröring

Winter Term 2025/26

These are notes on the Quillen Q -Construction and the “ $+ = Q$ ” Theorem based on [Wei13, Chapter IV, §6 and §7]. I would like to thank Linda Carnevale for compiling a wonderful programme for the seminar.

Last time, we have seen how to define higher K-groups using the $+$ and the S^{-1} -constructions, where the former works for rings R and the latter works for symmetric monoidal categories.

Today we are going to look at the Quillen Q -construction, which is used to construct higher K-groups for exact categories.

We'll start by defining the Quillen Q -construction and afterwards, we'll compare the construction to constructions of higher K-theory that we've seen so far; i.e. the $+$ - and S^{-1} -constructions.

Recall:

Definition 0.1 ([Wei13, Ch. II, Def 7.0]). An *exact category* is a pair $(\mathcal{C}, \mathcal{E})$, where

- \mathcal{C} additive category
- \mathcal{E} family of sequences of the form

$$0 \rightarrow B \xrightarrow{i} C \xrightarrow{j} D \rightarrow 0 \tag{*}$$

such that \mathcal{C} admits a full embedding into an Abelian category \mathcal{A} such that

- \mathcal{E} is the class of \mathcal{A} -short exact sequences in \mathcal{C} .
- \mathcal{C} is closed under extensions in \mathcal{A} , i.e. if $B, D \in \mathcal{C}$ and $(*)$ exact in \mathcal{A} , then $C \in \mathcal{C}$ (up to isomorphism).

Morphisms i in $(*)$ are called *admissible monomorphisms*. Morphisms j in $(*)$ are called *admissible epimorphisms*. \dashv

1 The Quillen Q -Construction

The Q construction is essentially an auxillary category used as an intermediat step to define higher K-groups.

Definition 1.1 ([Wei13, Ch. IV, Def. 6.1]). \mathcal{A} exact category. Define category $Q\mathcal{A}$ with same objects as \mathcal{A} and morphisms are diagrams

$$A \xleftarrow{j} B_2 \xrightarrow{i} B$$

where j admissible epimorphism and i admissible monomorphism in \mathcal{A} . Two diagrams are equivalent if we have a diagram

$$\begin{array}{ccccc} A & \xleftarrow{j} & B_2 & \xleftarrow{i} & B \\ \parallel & & \downarrow \cong & & \parallel \\ A & \xleftarrow{j'} & B'_2 & \xleftarrow{i'} & B. \end{array}$$

Composition of $A \leftarrow B_2 \hookrightarrow B$ and $B \leftarrow C_2 \hookrightarrow C$ is $A \leftarrow C_1 \hookrightarrow C$ as in

$$\begin{array}{ccccc} C_1 & \longrightarrow & C_2 & \longrightarrow & C \\ \downarrow & \lrcorner & \downarrow & & \downarrow \\ A & \longleftarrow & B_2 & \longrightarrow & B \end{array}$$

□

Remark 1.2. If $A \hookrightarrow B$ is an admissible monic in \mathcal{A} , we get a morphism $A \xleftarrow{\text{id}} A \hookrightarrow B$ in $Q\mathcal{A}$.

If $C \twoheadrightarrow B$ is an admissible epi in \mathcal{A} , we get a morphism $B \leftarrow C \xrightarrow{\text{id}} C$ in $Q\mathcal{A}$. □

Proposition 1.3 ([Wei13, Ch. IV, Prop. 6.2]). *The geometric realization $BQ\mathcal{A}$ is a connected CW complex with $\pi_1(BQ\mathcal{A}) \cong K_0(\mathcal{A})$. The element of $\pi_1(BQ\mathcal{A})$ corresponding to $[A] \in K_0(\mathcal{A})$ is represented by the loop $0 \hookrightarrow A \twoheadrightarrow 0$.*

Proof. $BQ\mathcal{A}$ is a CW-complex by definition.

The zero-cells of this CW-complex (or the zero simplices of the nerve of $Q\mathcal{A}$) are the objects of \mathcal{A} . Since we have a path induced by $0 \hookrightarrow A$ for $A \in \mathcal{A}$, $BQ\mathcal{A}$ is connected.

Using some combinatorics of CW-complexes / simplicial set, one can show: Since the family of all morphism $0 \hookrightarrow A$ in $Q\mathcal{A}$ induces a maximal lattice, we can present $\pi_1(BQ\mathcal{A})$ as follows:

- Generators: Morphisms in $Q\mathcal{A}$.
- Relations: $[0 \hookrightarrow A] = 1$ for $A \in Q\mathcal{A}$ and $[f] \cdot [g] = [f \circ g]$ for composable morphisms f, g in $Q\mathcal{A}$.

Remains to show that we can reduce the generating set down to $0 \hookrightarrow A \twoheadrightarrow 0$ and that relations correspond with exact sequences.

Generators: Note Composition of $[0 \hookrightarrow B_2]$ and $[B_2 \hookrightarrow B]$ is $[0 \hookrightarrow B_2 \hookrightarrow B]$. Hence

$$1 = [0 \hookrightarrow B_2 \hookrightarrow B] = [B_2 \hookrightarrow B] \cdot \underbrace{[0 \hookrightarrow B_2]}_{=1} = [B_2 \hookrightarrow B].$$

Thus

$$[A \leftarrow B_2 \hookrightarrow B] = [B_2 \hookrightarrow B] \cdot [A \leftarrow B_2] = [A \leftarrow B_2].$$

Now

$$[A \leftarrow B] \cdot [0 \leftarrow A] = [0 \leftarrow A \leftarrow B] = [0 \leftarrow B],$$

hence

$$[A \leftarrow B] = [0 \leftarrow B] \cdot [0 \leftarrow A]^{-1}$$

and we get the generators $[0 \leftarrow A]$ as required.

Relations: Let $A \hookrightarrow B \twoheadrightarrow C$ be a short exact sequence in \mathcal{A} . Exactness yields:

$$(C \leftarrow B) \circ (0 \hookrightarrow C) = 0 \leftarrow A \hookrightarrow B$$

Hence (using above relation for generators)

$$[C \leftarrow B] = [C \leftarrow B][0 \leftarrow C] = [0 \leftarrow A \leftarrow B] = [0 \leftarrow A]$$

Thus

$$[0 \leftarrow B] \underset{\text{composition}}{=} [C \leftarrow B][0 \leftarrow C] = [0 \leftarrow A][0 \leftarrow C],$$

which is the additivity relation in $K_0(\mathcal{A})$. This also yields that $\pi_1(BQ\mathcal{A})$ is Abelian: We have the exact sequences $A \hookrightarrow A \oplus B \twoheadrightarrow B$ and $B \hookrightarrow A \oplus B \twoheadrightarrow A$ yielding

$$[0 \leftarrow A][0 \leftarrow B] = [0 \leftarrow A \oplus B] = [0 \leftarrow B][0 \leftarrow A].$$

All relations in $\pi_1(BQ\mathcal{A})$ are generated by these relations: Given two composable morphisms $A \leftarrow B_2 \hookrightarrow B$ and $B \leftarrow C_2 \hookrightarrow C$ in $Q\mathcal{A}$, we have

$$\begin{array}{ccccc} \ker \varphi' & \xlongequal{\quad} & \ker \varphi & & \\ \downarrow & & \downarrow & & \\ B_2 \times_B C_2 & \hookrightarrow & C_2 & \hookrightarrow & C \\ \downarrow \varphi' & & \downarrow \varphi & & \\ A & \xlongleftarrow{\quad} & B_2 & \xlongrightarrow{\quad} & B. \end{array}$$

Hence we get from the exact columns the relations

$$[0 \leftarrow \ker \varphi] = [0 \leftarrow B_2 \times_B C_2][0 \leftarrow B_2]^{-1}$$

and

$$[0 \leftarrow \ker \varphi] = [0 \leftarrow C_2][0 \leftarrow B]^{-1}$$

Hence

$$\begin{aligned} & [0 \leftarrow C_2][0 \leftarrow B]^{-1} = [0 \leftarrow B_2 \times_B C_2][0 \leftarrow B_2]^{-1} \\ \Leftrightarrow & [0 \leftarrow C_2][0 \leftarrow B]^{-1}[0 \leftarrow B_2] = [0 \leftarrow B_2 \times_B C_2] \\ \Leftrightarrow & [0 \leftarrow C_2][0 \leftarrow B]^{-1}[0 \leftarrow B_2][0 \leftarrow A]^{-1} = [0 \leftarrow B_2 \times_B C_2][0 \leftarrow A]^{-1} \\ \Leftrightarrow & [B \leftarrow C_2][A \leftarrow B_2] = [A \leftarrow B_2 \times_B C_2] \\ \Leftrightarrow & [B \leftarrow C_2 \hookrightarrow C][A \leftarrow B_2 \hookrightarrow B] = [A \leftarrow B_2 \times_B C_2 \hookrightarrow C], \end{aligned}$$

which is the relation generated by the composition. Thus $K_0(\mathcal{A}) = \pi_1(BQ\mathcal{A})$. ■

Definition 1.4. Let \mathcal{A} be a small exact category. Define $K\mathcal{A} := \Omega BQ\mathcal{A}$ and

$$K_n(\mathcal{A}) = \pi_n K\mathcal{A} = \pi_{n+1}(BQ\mathcal{A})$$

for $n \geq 0$. □

An exact functor $\mathcal{A} \rightarrow \mathcal{B}$ induces a functor $Q\mathcal{A} \rightarrow Q\mathcal{B}$. This induces a map $BQ\mathcal{A} \rightarrow BQ\mathcal{B}$ and so a map $K_n(\mathcal{A}) \rightarrow K_n(\mathcal{B})$.

Isomorphic functors induce the same map on K -groups because they induce isomorphic functors $Q\mathcal{A} \rightarrow Q\mathcal{B}$.

Definition 1.5. Let R be a ring with unit.

- Let $\mathbf{P}(R) =$ exact category of finitely generated projective R -modules. Define $K(R) := K\mathbf{P}(R)$ and $K_n(R) := K_n\mathbf{P}(R)$, the K -groups of R .
- If R is Noetherian. Let $\mathbf{M}(R) =$ category of finitely generated R -modules. Set $G(R) := K\mathbf{M}(R)$ and $G_n(R) := K_n\mathbf{M}(R)$, the G -groups of R .

For $n = 0$, these definitions agree with the earlier definitions by Proposition 1.3

2 The “ $+ = Q$ ” Theorem

Let $S = \text{iso } \mathcal{A}$. and consider \mathcal{A} symmetric monoidal using \oplus . Then we also defined $K^\oplus \mathcal{A} = B(S^{-1}S)$.

We conclude the talk by proving the following Theorem, comparing the constructions of K -theory.

Theorem 2.1 ([Wei13, Ch. IV, Thm. 7.1]). *If \mathcal{A} is a split exact category and $S = \text{iso } \mathcal{A}$, then $\Omega BQ\mathcal{A} \simeq B(S^{-1}S)$. Hence $K_n(A) \cong K_n(S)$ for all $n \geq 0$.*

From this we get the $+ = Q$ -Theorem, since last time we saw that the S -construction is a $+$ -construction for projective R -modules.

Corollary 2.2 (“ $+ = Q$ ”, [Wei13, Corollary 7.2]). *For every ring R ,*

$$\Omega BQP(R) \cong K_0(R) \times BGL(R)^+.$$

Hence $K_n(R) \cong K_n P(R)$ for all $n \geq 0$.

Idea behind proof of 2.1: Find a fibre sequence

$$B(S^{-1}S) \rightarrow ? \rightarrow BQ\mathcal{A}$$

with $?$ contractible.

cooking up topological spaces is hard, but we have Quillen Theorem B from Anna’s talk.

Idea: Use Quillen Theorem B, i.e. find a category $?$ such that

$$S^{-1}S \rightarrow ? \rightarrow Q\mathcal{A}$$

is a nice enough fibre sequence.

Definition 2.3. Define \mathcal{EA} to be the category with objects the short exact sequence in \mathcal{A} . And morphisms $E' = (A' \hookrightarrow B' \twoheadrightarrow C') \rightarrow (A \hookrightarrow B \twoheadrightarrow C)$ diagrams

$$\begin{array}{ccc} E': & \begin{array}{ccccc} A' & \hookrightarrow & B' & \twoheadrightarrow & C' \\ \alpha \uparrow & & \parallel & & \uparrow \\ A & \hookrightarrow & B' & \twoheadrightarrow & C'' \\ \parallel & & \downarrow \beta & & \downarrow \\ A & \hookrightarrow & B & \twoheadrightarrow & C. \end{array} & \\ \downarrow & & \\ E: & & \end{array}$$

Two such diagrams are equivalent if there is an isomorphism between them that is the identity at all vertices except for C'' . \square

The right column consists of morphisms in $Q\mathcal{A}$. Hence get a functor

$$t: \mathcal{EA} \rightarrow Q\mathcal{A}, t(A \hookrightarrow B \twoheadrightarrow C) = C.$$

Write $\mathcal{E}_C = t^{-1}(C)$.

What do we need to show for Quillen Theorem B: We need to identify the fibres and show that all of the functors induced by morphisms in $Q\mathcal{A}$ induce equivalences on the fibres. Then we'd be done.

What are the fibres?

The endomorphisms of $C \in Q\mathcal{A}$ are (essentially) automorphisms of C in \mathcal{A} . Thus a morphism in \mathcal{E}_C is (essentially)

$$\begin{array}{ccccc} A' & \hookrightarrow & B' & \twoheadrightarrow & C \\ \alpha \uparrow \cong & & \cong \downarrow \beta & & \parallel \\ A & \hookrightarrow & B & \twoheadrightarrow & C \end{array}$$

an isomorphism.

Example 2.4. The assignment $A \in S \mapsto (A \xrightarrow{\text{id}} A \rightarrow 0) \in \mathcal{E}_0$ induces a homotopy equivalence. \square

Lemma 2.5 ([Wei13, Ch. IV, Lemma 7.5 and Remark 7.5.2]). *For any $C \in \mathcal{A}$, \mathcal{E}_C is symmetric monoidal and there is a faithful monoidal functor $\eta_C: S \rightarrow \mathcal{E}_C; A \mapsto (A \hookrightarrow A \oplus C \twoheadrightarrow C)$.*

Moreover, this functor is essentially surjective if \mathcal{A} is split exact.

There is a more general construction of S^{-1} detailed in [Wei13, Ch. IV, Definition 4.7.1], such that we can form $S^{-1}\mathcal{E}\mathcal{A}$ when \mathcal{A} is split exact. η_C induces a functor $S^{-1}S \rightarrow S^{-1}\mathcal{E}_C$.

Assume that \mathcal{A} is split exact from now on.

Proposition 2.6 ([Wei13, Ch. IV, Prop. 7.6]). *Each $S^{-1}S \rightarrow S^{-1}\mathcal{E}_C$ is a homotopy equivalence.*

Idea of proof. The proof goes by considering the cofibre of $S^{-1}S \rightarrow S^{-1}\mathcal{E}_C$ and a version of Quillen Theorem A from Anna's talk. \blacksquare

Lemma 2.7 ([Wei13, Ch. IV, Lemma 7.7]). *For each morphism $\varphi: C' \rightarrow C$ in $Q\mathcal{A}$, there is a canonical functor $\varphi^*: \mathcal{E}_C \rightarrow \mathcal{E}_{C'}$ and a natural transformation $\eta_E: \varphi^*(E) \rightarrow E$ from φ^* to the inclusion of \mathcal{E}_C in $\mathcal{E}\mathcal{A}$.*

Construction of φ^ .* Represent φ by $C' \leftarrow C'' \hookrightarrow C$ and take $A \hookrightarrow B \twoheadrightarrow C$ in $\mathcal{E}\mathcal{A}$. Choose a pullback $B' = C'' \times_C B$. Then we get an admissible composite $B' \twoheadrightarrow C'' \twoheadrightarrow C'$ with kernel A' , yielding

$$\varphi^*(A \hookrightarrow B \twoheadrightarrow C) := A' \hookrightarrow B' \twoheadrightarrow C'.$$

\blacksquare

Theorem 2.8 ([Wei13, Ch. IV, Thm. 7.8 and proof of Thm. 7.1]). *The sequence $S^{-1}S \rightarrow S^{-1}\mathcal{E}\mathcal{A} \xrightarrow{t} Q\mathcal{A}$ is a homotopy fibration and $\mathcal{E}\mathcal{A}$ is contractible.*

Proof. We want to use Quillen Theorem B to prove the first part. For this, we need to show that the induced base changes φ^* of $0 \hookrightarrow C$ and $0 \leftarrow C$ induce homotopy equivalences of fibres.

For $0 \hookrightarrow C$: The composition $S^{-1}S \rightarrow S^{-1}\mathcal{E}_C \xrightarrow{\varphi^*} S^{-1}\mathcal{E}_0 = S^{-1}S$ is the identity and thus φ^* is a homotopy equivalence.

For $0 \leftarrow C$: The composition $S^{-1}S \rightarrow S^{-1}\mathcal{E}_C \xrightarrow{\varphi^*} S^{-1}\mathcal{E}_0 = S^{-1}S$ sends A to $A \oplus C$ in $S^{-1}S$, which is a homotopy equivalence.

(Contractibility omitted.) \blacksquare

We now get Theorem 2.1 as a consequence of Theorem 2.8.

References

- [Wei13] Charles A. Weibel. *The K-book. An introduction to algebraic K-theory.* English. Vol. 145. Grad. Stud. Math. Providence, RI: American Mathematical Society (AMS), 2013. ISBN: 978-0-8218-9132-2.