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These are notes on the Quillen Q-Construction and the “+ = Q” Theorem based on [Wei13,
Chapter IV, §6 and §7]. I would like to thank Linda Carnevale for compiling a wonderful
programe for the seminar.

Last time, we have seen how to define higher K-groups using the + and the S−1-
constructions, where the former works for rings R and the latter works for symmetric
monoidal categories.
Today we are going to look at the Quillen Q-construction, which is used to construct
higher K-groups for exact categories.
We’ll start by defining the Quillen Q-construction and afterwards, we’ll compare the
construction to constructions of higher K-theory that we’ve seen so far; i.e. the +- and
S−1-constructions.

Recall:

Definition 0.1 ([Wei13, Ch. II, Def 7.0]). An excact category is a pair (C, E), where

• C additive category

• E family of sequences of the form

0→ B
i−→ C

j−→ D → 0 (∗)

such that C admits a full embedding into an Abelian category A such that

• E is the class of A-short exact sequences in C.

• C is closed under extensions in A, i.e. if B, D ∈ C and (∗) exact in A, then C ∈ C (up to
isomorphism).

Morphisms i in (∗) are called admissible monomorphisms. Morphisms j in (∗) are called
admissible epimorphisms. ⌟

1 The Quillen Q-Construction

The Q construction is essentially an auxillary category used as an intermediat step to
define higher K-groups.

Definition 1.1 ([Wei13, Ch. IV, Def. 6.1]). A exact category. Define category QA with same
objects as A and morphisms are diagrams

A B2 B
j

i
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where j admissible epimorphism and i admissible monomorphism in A. Two diagrams are
equivalent if we have a diagram

A B2 B

A B′
2 B.

j

i

∼=

j′
i′

Composition of A ↞ B2 ↪→ B and B ↞ C2 ↪→ C is A ↞ C1 ↪→ C as in

C1 C2 C

A B2 B

⌟

⌟

Remark 1.2. If A ↪→ B is an admissible monic in A, we get a morphism A
id←− A ↪→ B in QA.

If C ↠ B is an admissible epi in A, we get a morphism B ↞ C
id−→ C in QA. ⌟

Proposition 1.3 ([Wei13, Ch. IV, Prop. 6.2]). The geometric realization BQA is a connected
CW complex with π1(BQA) ∼= K0(A). The element of π1(BQA) corresponding to [A] ∈ K0(A)
is represented by the loop 0 ↪→ A ↠ 0.

Proof. BQA is a CW-complex by definition.
The zero-cells of this CW-complex (or the zero smiplices of the nerve of QA) are the objects

of A. Since we have a path induced by 0 ↪→ A for A ∈ A, BQA is connected.
Using some combinatorics of CW-compelxes / simplicial set, one can show: Since the family

of all morphism 0 ↪→ A in QA induces a maximal lattice, we can present π1(BQA) as follows:

• Generators: Morphisms in QA.

• Relations: [0 ↪→ A] = 1 for A ∈ QA and [f ] · [g] = [f ◦ g] for composable morphisms f, g
in QA.

Remains to show that we can reduce the generating set down to 0 ↪→ A ↠ 0 and that
relations correspond with exact sequences.

Generators: Note Composition of [0 ↪→ B2] and [B2 ↪→ B] is [0 ↪→ B2 ↪→ B]. Hence

1 = [0 ↪→ B2 ↪→ B] = [B2 ↪→ B] · [0 ↪→ B2]︸ ︷︷ ︸
=1

= [B2 ↪→ B].

Thus
[A ↞ B2 ↪→ B] = [B2 ↪→ B] · [A ↞ B2] = [A ↞ B2].

Now
[A ↞ B] · [0 ↞ A] = [0 ↞ A ↞ B] = [0 ↞ B],

hence
[A ↞ B] = [0 ↞ B] · [0 ↞ A]−1

and we get the generators [0 ↞ A] as required.
Relations: Let A ↪→ B ↞ C be a short exact sequence in A. Exactness yields:

(C ↞ B) ◦ (0 ↪→ C) = 0 ↞ A ↪→ B
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Hence (using above relation for generators)
[C ↞ B] = [C ↞ B][0 ↪→ C] = [0 ↞ A ↪→ B] = [0 ↞ A]

Thus
[0 ↞ B] =

composition
[C ↞ B][0 ↞ C] = [0 ↞ A][0 ↞ C],

which is the additivity relation in K0(A). This also yields that π1(BQA) is Abelian: We have
the exact sequences A ↪→ A⊕B ↠ B and B ↪→ A⊕B ↠ A yielding

[0 ↞ A][0 ↞ B] = [0 ↞ A⊕B] = [0 ↞ B][0 ↞ A].
All relations in π1(BQA) are generated by these relations: Given two composable morphisms
A ↞ B2 ↪→ B and B ↞ C2 ↪→ C in QA, we have

ker φ′ ker φ

B2 ×B C2 C2 C

A B2 B.

φ′ φ

Hence we get from the exact columns the relations
[0 ↞ ker φ] = [0 ↞ B2 ×B C2][0 ↞ B2]−1

and
[0 ↞ ker φ] = [0 ↞ C2][0 ↞ B]−1

Hence
[0 ↞ C2][0 ↞ B]−1 = [0 ↞ B2 ×B C2][0 ↞ B2]−1

⇔ [0 ↞ C2][0 ↞ B]−1[0 ↞ B2] = [0 ↞ B2 ×B C2]
⇔ [0 ↞ C2][0 ↞ B]−1[0 ↞ B2][0 ↞ A]−1 = [0 ↞ B2 ×B C2][0 ↞ A]−1

⇔ [B ↞ C2][A ↞ B2] = [A ↞ B2 ×B C2]
⇔ [B ↞ C2 ↪→ C][A ↞ B2 ↪→ B] = [A ↞ B2 ×B C2 ↪→ C],

which is the relation generated by the composition. Thus K0(A) = π1(BQA). ■

Definition 1.4. Let A be a small exact category. Define KA := ΩBQA and
Kn(A) = πnKA = πn+1(BQA)

for n ≥ 0. ⌟

An exact functor A → B induces a functor QA → QB. This induces a map BQA → BQB
and so a map Kn(A)→ Kn(B).

Isomorphic functors induce the same map on K-groups because they induce isomorphic
functors QA → QB.
Definition 1.5. Let R be a ring with unit.

• Let P(R) = exact category of finitely generated projective R-modules. Define K(R) :=
KP(R) and Kn(R) := KnP(R), the K-groups of R.

• If R is Noetherian. Let M(R) = category of finitely generated R-modules. Set G(R) :=
KM(R) and Gn(R) := KnM(R), the G-groups of R.

⌟

For n = 0, these definitions agree with the earlier definitions by Proposition 1.3
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2 The “+ = Q” Theorem

Let S = isoA. and consider A symmetric monoidal using ⊕. Then we also defined K⊕A =
B(S−1S).

We conclude the talk by proving the following Theorem, comparing the constructions
of K-theory.

Theorem 2.1 ([Wei13, Ch. IV, Thm. 7.1]). If A is a split exact category and S = isoA, then
ΩBQA ≃ B(S−1S). Hence Kn(A) ∼= Kn(S) for all n ≥ 0.

From this we get the + = Q-Theorem, since last time we saw that the S-construction
is a +-construction for projective R-modules.

Corollary 2.2 (“+ = Q”,[Wei13, Corollary 7.2]). For every ring R,

ΩBQP (R) ∼= K0(R)×BGL(R)+.

Hence Kn(R) ∼= KnP (R) for all n ≥ 0.

Idea behind proof of 2.1: Find a fibre sequence

B(S−1S)→?→ BQA

with ? contractible.

cooking up topological spaces is hard, but we have Quillen Theorem B from Anna’s
talk.

Idea: Use Quillen Theorem B, i.e. find a category ? such that

S−1S →?→ QA

is a nice enough fibre sequence.

Definition 2.3. Define EA to be the category with objects the short exact sequence in A. And
morphisms E′ = (A′ ↪→ B′ ↠ C ′)→ (A ↪→ B ↠ C) diagrams

E′ : A′ B′ C ′

A B′ C ′′

E : A B C.

α

β

Two such diagrams are equivalent if there is an isomorphism between them that is the identity
at all verticies excepte for C ′′. ⌟

The right column consists of morphisms in QA. Hence get a functor

t : E → QA, t(A ↪→ B ↠ C) = C.

Write EC = t−1(C).
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What do we need to show for Quillen Theorem B: We need to identify the fibres and
show that all of the functors induced by morphisms in QA induce equivalences on the
fibres. Then we’d be done.

What are the fibres?
The endomorphisms of C ∈ QA are (essentially) automorphisms of C in A. Thus a morphism

in EC is (essentially)
A′ B′ C

A B C

β∼=α ∼=

an isomorphism.

Example 2.4. The assignment A ∈ S 7→ (A id−→ A→ 0) ∈ E0 induces a homotopy equivalence.
⌟

Lemma 2.5 ([Wei13, Ch. IV, Lemma 7.5 and Remark 7.5.2]). For any C ∈ A, EC is symmetric
monoidal and there is a faithful monoidal funcotr ηC : S → EC ; A 7→ (A ↪→ A⊕ C ↠ C).

Moreover, this functor is essentially surjective if A is split exact.

There is a more general construction of S−1 detailed in [Wei13, Ch. IV, Definition 4.7.1],
such that we can form S−1EA when A is split exact. ηC induces a functor S−1S → S−1EC .

Assume that A is split exact from now on.

Proposition 2.6 ([Wei13, Ch. IV, Prop. 7.6]). Each S−1S → S−1EC is a homotopy equivalence.

Idea of proof. The proof goes by considering the cofibre of S−1S → S−1EC and a version of
Quillen Theorem A from Anna’s talk. ■

Lemma 2.7 ([Wei13, Ch. IV, Lemma 7.7]). For each morphism φ : C ′ → C in QA, there is a
canonical functor φ∗ : EC → EC′ and a natural transformation ηE : φ∗(E) → E from φ∗ to the
inclusion of EC in EA.

Construction of φ∗. Represent φ by C ′ ↞ C ′′ ↪→ C and take A ↪→ B ↠ C in EA. Choose a
pullback B′ = C ′′ ×C B. Then we get an admissible compositte B′ ↠ C ′′ ↠ C ′ with kernel A′,
yielding

φ∗(A ↪→ B ↠ C) := A′ ↪→ B′ ↠ C ′.

■

Theorem 2.8 ([Wei13, Ch. IV, Thm. 7.8 and proof of Thm. 7.1]). The sequence S−1S →
S−1EA t−→ QA is a homotopy fibration and EA is contractible.

Proof. We want to use Quillen Theorem B to prove the first part. For this, we need to show
that the induced base changes φ∗ of 0 ↪→ C and 0 ↞ C induce homotopy equivalences of fibres.

For 0 ↪→ C: The composition S−1S → S−1EC
φ∗
−→ S−1E0 = S−1S is the identity and thus

φ∗ is a homotopy equivalence.
For 0 ↞ C: The composition S−1S → S−1EC

φ∗
−→ S−1E0 = S−1S sends A to A⊕C in S−1S,

which is a homotopy equivalence.
(Contractibility ommitted.) ■

We now get Theorem 2.1 as a consequence of Theorem 2.8.
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