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These are notes for a talk given in the PhD-seminar on Periods and Nori Motives in the
Summer Term 2024 at the University of Duisburg-Essen. The main references for this talk is
[HM17]. I would like to thank the organiser Riccardo Tosi for discussing numerous questions
with me.

Throughout let k ⊂ C be a subfield, and recall that a k-variety is a quasi-projective, reduced
scheme of finite type over k. We denote the category of all k-varieties by Var.

Last time, we defined Nori motives. This was done by first considering the diagram Pairseff

of effective pairs whose vertices consist of pairs (X, Y, i) with X a k-variety, Y ⊂ X a closed
subvariety, and i an integer. We defined the category of effective Nori motives MMeff

Nori =
C(Pairseff, H∗). We then at the Tate motive 1(−1) = (Gm, {1}, 1) and called the resulting
category MMNori = MMeff

Nori[1(−1)−1] the category of Nori motives. We write the functor
Pairseff →MMeff

Nori as (X, Y, i) 7→ H i
Nori(X, Y ).

In this talk, we would like to prove rigidity. That is, we would like to prove the following
Theorem:

Theorem 1 (Nori, [HM17, Thm. 9.1.5]). (a) MMeff
Nori has a natural structure of a commut-

ative tensor category with unit such that H∗ is a tensor functor.

(b) MMNori is a rigid tensor category.

(c) MMNori is equivalent to the category of representations of a faithfully flat pro-algebraic
group scheme Gmot(k,Z) over Z.

We will spent the entire talk on proving this theorem.

Remark. It is an open question whetherMMeff
Nori is a full subcategory ofMMNori or equival-

ently, if −⊗ 1(−1) is full on MMeff
Nori. ⌟

Definition 2. The group scheme Gmot(k,Z) is called the motivic Galois group in the sense of
Nori. Its base change to Q is denoted by Gmot(k,Q) or Gmot(k) for short. ⌟

Remark. The first statement of the above theorem also holds with the coefficient ring Z replaced
by any Noetherian ring R. The other two hold if R is a Dedeking ring or a field. ⌟

We want to do this, by applying Nori’s rigidity criterion, which we proved in Talk 5.

Theorem 3 (Nori’s rigidity criterion, [HM17, Prop. 8.3.4]). Let S = {Vi | i ∈ I} be a class of
objects in MMProj

Nori, i.e. H∗(Vi) is projective for all i, with the following properties:

(a) S generatesMMNori as an abelian tensor category relative to H∗, i.e. its diagram category
is all of MMNori.
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(b) For every Vi, there is a Wi ∈MMProj
Nori and a morphism

qi : 1→ Vi ⊗Wi

such that the dual of H∗(qi) induces a perfect pairing.

In order to be able to do this, we need to do three things:

• Define a tensor structure on MMeff
Nori,

• Find objects for which we can construct such a qi, and

• Show that these objects generate.

For the tensor structure, we would like to define it as naturally as possible: That is, we
would like to just use the product

(X, Y, i)× (X ′, Y ′, j) = (X ×X ′, Y ×X ′ ∪X × Y ′, i + j).

Unfortunately, this is incompatible with taking cohomology, since the Künneth formula also
involves other degrees when computing singular cohomology. Last time, we defined the notion
of good and very good pairs. These were the following:

• A pair (X, Y, i) is good if the relative singular cohomology of (X, Y ) is concentrated in
degree i, and in degree i it is free.

• A good pair (X, Y, i) is very good, if X is affine, X \ Y is smooth, and either X has
dimension i and Y dimension i− 1, or X = Y of dimension less than i.

The full sub-diagram of Pairseff consisting of all (very) good pairs is denoted by Goodeff (VGoodeff).
We can easily define the tensor structure on the diagram category of good pairs. Thus, we would
like to show that C(Goodeff, H∗) ≃ C(Pairseff, H∗) =MMeff

Nori. (Actually for proving rigidity it
is better to prove equivalence with very good pairs.)

With all of this in mind, we can talk about the strategy that we are going to employ to prove
Theorem 1:

Rigidity
(Theorem 1)

Tensor Structure
(Theorem 14)

Restriction to (Very) Good Pairs
(Theorem 4)

Generating Property for
Certain Very Good Pairs

(Corollary 10)

Duality Property for
Certain Very Good Pairs

(Lemma 16)

Top Cohomology Computation
using Gysin Isomorphism

(Lemma 15)
Poincaré Duality
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1 Every Pair is Essentially Good
We would like to prove the following theorem.

Theorem 4 ([HM17, Thm. 9.2.22]). The diagram categories C(Pairseff, H∗), C(Goodeff, H∗) and
C(VGoodeff, H∗) are equivalent.

In Talk 3, we have seen that we only need to cook up a representation T : Pairseff →
C(VGoodeff, H∗) such that the restriction to VGoodeff is H∗.

We construct this, by essentially slowly extending the restricted representation H∗ : VGoodeff →
C(VGoodeff, H∗). So, we already know what we have to do for affine very good pairs. The next
step is to get to affine pairs. Fortunately, using the Basic Lemma from last time [HM17, Thm.
2.5.2] and an induction, one can prove the following

Proposition 5 ([HM17, Prop. 9.2.3]). Every affine variety X has a filtration

∅ = F−1X ⊂ F0X ⊂ · · · ⊂ Fn−1X ⊂ FnX = X

such that every pair (FjX, Fj−1X, j) is very good. We call such a filtration a very good filtration.

We already know what we should do with such a pair (FjX, Fj−1X, j), so it would be nice
if we could replace X by a complex comprised of something related to the FjX. In order to do
this properly, we need to have a category of chain complexes and in order to have that we need
an additive category constructed out of the category of Varieties. We are going to do this in one
of the most naïve ways possible.

Definition 6 ([HM17, Def. 1.1.1]). Let Z[Var] be the category with the objects of Var as
objects. The morphisms for two connected varieties X and Y are defined as Z · HomVar(X, Y ),
and we extend this in the unique way preserving finite coproducts from Var. That is, we define
for schemes X = ⋃

i Xi and Y = ⋃
j Yj , where the Xi’s and Yj ’s are the connective components

of X and Y , respectively, the morphisms between X and Y as follows:

HomZ[Var](X, Y ) =
⊕
i,j

HomZ[Var](Xi, Yj) =
⊕
i,j

{∑
k

akfk | ak ∈ Z, fk ∈ HomVar(Xi, Yj)
}

.

Composition is defined by extending the composition on Var in a canonical way. ⌟

Filtrations look a bit like chain complexes, and this is exactly where we’re headed. We would
like to send an affine X to the complex

· · · → Hj
Nori(FjX, Fj−1X)→ Hj+1

Nori(Fj+1X, FjX)→ · · ·

in Db(C(VGoodeff, H∗)). Let’s denote this complex by R̃(F•X). This is functorial in very good
filtrations. Furthermore if the pair (X, ∅, i) were a very good pair, taking the trivial filtration
F ∗X, we get H i

Nori(X) = H i(R̃(F•X)). So this looks like a step in the right direction.
How do we extend this definition to a non-affine variety? We use, as one often does when

involving cohomology, Čech covers. So for a not-necessarily affine variety X, we an finite open
affine cover ŨX = {Ui}i∈I , and we replace X by its Čech complex C∗(ŨX) in Cb(Z[Var]).
Now each degree Cn(ŨX) is affine and thus, we can find a very good filtration for each of
these. One can show that one can choose these filtrations compatible with the differential, such
that we obtain a bigraded object F•C•(ŨX). For each n, we can construct R̃(F•Cn(ŨX)) ∈
Db(C(VGoodeff, H∗)). By varying n, we obtain a bigraded complex R̃(F•C•(ŨX)) of which, we
can take the total complex Tot(R̃(F•C•(ŨX))). If we started with a very good pair (X, Y, i),
we would have successfully extended H∗

Nori from very good effective pairs of the above form
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to all pairs of the above form – except that we didn’t because assigning a Čech complex is
not functorial. This is because a map of schemes does not necessarily induce a unique map of
coverings. If it exists, there can be many such maps.

We can solve this issue by attaching more data to our covers and requiring morphisms of
covers to respect this data.

Definition 7. Let X be a variety. A rigidified affine cover is a finite open affine covering {Ui}i∈I

together with the following choice: for every point x ∈ X an index ix ∈ I with x ∈ Uix . We also
assume that every index occurs as ix for some x ∈ X. ⌟

Now, we can repeat the above construction with rigidified affine covers (refining to get
compatibility with morphisms as needed; this does not change the total complex obtained) to
actually get a functorial assignment Tot(R̃(F•C•(ŨX))).

With all of this in place, we can construct the general functor R : Cb(Z[Var])→ Db(C(VGoodeff, H∗))
that we would like to have.

Proposition 8 ([HM17, Prop. 9.2.18]). Consider the representation H∗
Nori : VGoodeff → C(VGoodeff, H∗).

Then, there is a natural contravariant triangulated functor

R : Cb(Z[Var])→ Db(C(VGoodeff, H∗))

on the category of bounded homological complexes in Z[V ar] such that for every good pair
(X, Y, i), we have

Hj(R(Cone(Y → X))) =
{

0 j ̸= i,

H i
Nori(X, Y ) j = i.

Moreover, the image of R(X) in Db(R−Mod) computes the singular cohomology of X.

Proof. Okay, we need to construct R. By the discussion before this proposition, we already know
what we want to do for a complex concentrated in a single degree. We will now extend this, to
the case of having a complex X• ∈ Cb(Z[Var]). For this, we chose compatible rigidified affine
covers and then we make the same construction as above just with the very good filtrations of
the total complex of the Čech (double) complex that we get from these covers.

Now it is an exercise in homological algebra to show that everything is well-defined, functorial
and has the desired properties. ■

Remark. The above proposition also holds if we replace C(VGoodeff, H∗) by any Abelian cat-
egory A together with a faithful forgetful functor f to R −Mod with R a Noetherian ring flat
over Z, and if we replace H∗

Nori by any representation T : VGoodeff → A such that f ◦ T is
singular cohomology with R-coefficients. ⌟

Definition 9. Let Y ⊂ X be a closed subvariety with open complement U . For i ∈ Z, we put

R(X, Y ) = R(Cone(Y → X)), RY (X) = R(Cone(U → X)) ∈ Db(C(VGoodeff, H∗))
H i

Nori(X, Y ) = H i(R(X, Y )), H i
Nori(RY (X)) ∈ C(VGoodeff, H∗).

H∗(X, Y ) is called relative cohomology and HY (X, i) is called cohomology with support. Note
that this notion of relative cohomology is compatible with earlier usages. ⌟

Proof of Theorem 4. Note that the inclusion of diagrams induce faithful functors

C(VGoodeff, H∗)→ C(Goodeff, H∗)→ C(Pairseff, H∗).
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Therefore, in order to show that these inclusions are isomorphisms, it is enough to construct a
representation T of Pairseff in the category C(VGoodeff, H∗) restricting to H∗

Nori for very good
effective pairs. By Proposition 8, we have a functor

R : Cb(Z[Var])→ Db(C(VGoodeff, H∗)).

Consider an effective pair (X, Y, i) in Pairseff. We represent it by

T (X, Y, i) = H i(R(X, Y )) = H i(R(Cone(Y → X)) ∈ C(VGoodeff, H∗)).

By construction, this restricts to H∗
Nori on VGoodeff and we only need to specify what happens

on edges. This construction is functorial. Therefore, for edges induced by morphisms of schemes,
we can just use the induced morphism between the cones. For the connecting homomorphisms,
we use the machinery of triangulated categories to cook up the morphisms we need. ■

This allows us to obtain that certain good pairs generate the diagram category.

Corollary 10 ([HM17, Cor. 9.2.23]). Every object in MMeff
Nori is a subquotient of a direct

sum of object of the form H i
Nori(X, Y ) for a good pair (X, Y, i) where X = W \W∞ and Y =

W0 \ (W0 ∩W∞) with W smooth and projective, and W∞ ∪W0 a divisor with normal crossings.

Proof. By Theorem 4, MMeff
Nori is generated by very good pairs. Thus, we can assume X \ Y

to be smooth. Now, we can use resolution of singularities to cook up W , W0, and W∞ and the
desired isomorphism of a very good pair with such a motive follows by excision. ■

2 Tensor Structure

Now that we can reduce to effective (very) good pairs, we can construct the tensor structure.

Proposition 11. The graded diagrams Goodeff and VGoodeff carry a weak commutative product
structure in the sense of Talk 5 [HM17, Rmk. 8.1.6] defined as follows: For all vertices
(X, Y, i), (X ′, Y ′, i′)

(X, Y, i)× (X ′, Y ′, i′) = (X ×X ′, X × Y ′ ∪ Y ×X ′, i + i′),

with the obvious definition on edges. There is a unit given by (Spec k, ∅, 0).
Moreover, H∗ is a weak graded multiplicative representation in the sense of Talk 5 [HM17,

Def. 8.1.3 and Rmk. 8.1.6] with

τ : H i+1(X ×X ′, X × Y ′ ∪ Y ×X ′;Z)→ H i(X, Y ;Z)⊗H i′(X ′, Y ′;Z)

the Künneth isomorphism.

Proof. Note that everything is well-defined, and the claim follows by doing some tedious but
straightforward compatibility checks. ■

Definition 12. Let Good and VGood be the localisations of Goodeff and VGoodeff, respectively,
with respect to the vertex 1(−1) = (Gm, {1}, 1). ⌟

Proposition 13 ([HM17, Prop. 9.3.3]). Good and VGood are graded diagrams with a weak
commutative product structure. Moreover, H∗ is a graded multiplicative representation of Good
and VGood.

Proof. This follows from the effective case. ■
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Putting this proposition and the results of the previous section together, we obtain the
following:

Theorem 14 ([HM17, Thm. 9.3.4]). (a) MMeff
Nori ⊂ MMNori are commutative tensor cat-

egories with a faithful fibre functor H∗.

(b) MMNori is equivalent ot the two diagram categories C(Good, H∗) and C(VGood, H∗).

3 Rigidity of Nori Motives
Now that we have constructed a tensor structure on Nori motives, we want to prove rigidity. We
have already found a rather specific generating set in Corollary 10. Thus, it remains to prove
some version of Poincaré duality for these objects.

Lemma 15 ([HM17, Lemma 9.3.8]). (a) H2n
Nori(PN ) = 1(−n) for N ≥ n ≥ 0.

(b) Let Z be a projective variety of dimension n. Then H2n
Nori(Z) ∼= 1(−n).

(c) let X be a smooth variety and Z ⊂ X a smooth, irreducible, closed subvariety of pure
codimension n. Then the motive with support satisfies

H2n
Z (X) ∼= 1(−n).

Proof. Recall that singular cohomology is a conservative functor on Nori motives. Thus, it
is enough to construct a morphism in MMNori and check that it induces an isomorphism in
singular cohomology.

We have seen the proof of (a) in Talk 2 for Hodge structures. The proof for Nori motives is
virtually the same.

For (b), choose an embedding Z → PN with N ≥ n. Then H2n
Nori(Z)← H2n(PN ) ∼= 1(−n) is

an isomorphism in MMNori because it is in singular cohomology.
For (c), note that the Gysin isomorphism for singular cohomology implies this assertion

there. Our strategy now is to construct the Gysin isomorphism motivically, and for this we are
more or less repeating its construction.

For the embedding Z → X one has the deformation to the normal cone, that is a smooth
scheme D(X, Z) together with a morphism to A1 such that the fibre of 0 is given by the normal
bundle NZX of Z in X and the other fibres by X. The product Z × A1 can be embedded into
D(X, Z) as a closed subvariety of codimension n; this induces the zero section on NZX on the
fibre of zero and the embedding of Z in X on all other fibres.

This yields the diagram

Z Z × A1 Z

NZ(X) D(X, Z) X

{0} A1 {1}.

0

The Gysin isomorphisms in singular cohomology for the three closed embeddings together with
homotopy invariance of singular cohomology imply that the maps

H2n
Z (X)← H2n

Z×A1(D(X, Z))→ H2n
Z (NZX)
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are isomorphisms of motives. Thus, we have reduced the problem to the embedding of the zero-
section Z ↪→ NZX. This trivialises on a dense open subset U ⊂ Z, which in turn by construction
yields the isomorphism

H2n
Z (NZX)→ H2n

U (NZX|U )

induced by the inclusion. Thus, we may assume that the normal bundle is trivial, but in this
case, we get

NZ(X) ∼= NZ×{0}(Z × An) ∼= Z ×N{0}(An).

The Gysin isomorphism yields that the cohomology H∗
{0}(N{0}(An)) is concentrated in degree

2n and thus, the Künneth formula with support yields

H2n
Z (NZX) ∼= H2n

{0}(N{0}(An)) ∼= H2n
{0}(An) ∼= (H2

{0}(A1))⊗n ∼= 1(−n),

which yields the formula of the statement. ■

With this preparatory work done, we can show that the pairs of the from in Corollary 10
satisfy a duality condition.

Lemma 16 ([HM17, Lemma 9.3.9]). Let W be a smooth projective variety of dimension i and
W0, W∞ ⊂W divisors such that W0 ∪W∞ is a normal crossing divisor. Let

X = W \W∞, Y = W0 \ (W0 ∩W∞), X ′ = W \W0, and Y ′ = W∞ \ (W0 ∩W∞).

We assume that (X, Y ) is a very good pair.
Then, there is a morphism in MMNori

q : 1→ H i
Nori(X, Y )⊗H i

Nori(X ′Y ′)(i)

such that the dual of H∗(q) is a perfect pairing.

Proof. The two pairs (X, Y ) and (X ′, Y ′) are Poincaré dual, see for example [HM17, Prop. 2.4.5]
for a proof. Thus, both of them are good pairs, and hence

H i
Nori(X, Y )⊗H i

Nori(X ′, Y ′)→ H2i
Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)

is an isomorphism. Let ∆ = ∆(W \ (W0 ∪W∞)) via the diagonal embedding ∆. Now, we have

X × Y ′ ∪ Y ×X ′ ⊂ (X ×X ′) \∆.

Hence by functoriality and the definition of the motive with support, we have a map

H2i
Nori(X ×X ′, X × Y ′ ∪ Y ×X ′)← H2i

∆ (X ×X ′).

Again by functoriality, there is a map

H2i
∆ (X ×X ′)← H2i

∆̃ (W ×W )

with ∆̃ = ∆(W ). By Lemma 15 (c), this is isomorphic to 1(−i). We now get the map q by
twisting this composition by i. Since the dual of this map realises Poincaré duality in singular
cohomology, it is a perfect pairing. ■

Theorem 17 (Nori, [HM17, Thm. 9.3.10]). Let k ⊂ C be a field. Then MMNori(k) is ri-
gid, hence a neutral Tannakian category. It is equivalent to the category of linear algebraic
representations of the affine faithfully flat group scheme over Z

Gmot(k,Z) := Spec(A(Good, H∗)).
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Proof. We can apply Nori’s rigidity criterion: Let S be the set of objects of the form occurring
in Lemma 16. By this lemma, they admit a perfect pairing. Furthermore, they generate by
Corollary 10. Thus by Nori’s rigidity criterion and some statements around it, we get the
isomorphism to the category of representations of the above monoid scheme, which by Nori’s
rigidity criterion is actually a group scheme. ■

Proof of Theorem 1. Theorem 17 is just a more spelled out version of Theorem 1. ■
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