THE HEIGHT STRATIFICATION ON THE MODULI OF FORMAL GROUPS

November 13th, 2025

THESE ARE THE NOTES FOR A TALK ON THE ESAGA RESEARCH SEMINAR ON THE MODULI OF FORMAL GROUPS AND APPLICATIONS TO STABLE HOMOTOPY THEORY. THIS TALK IS ESSENTIALLY JUST A COPY FROM J. LURIE'S LECTURES ON CHROMATIC HOMOTOPY THEORY, SPLICED WITH IDEAS AND PROOFS FROM L. FARGUES' COURSE ON THE GEOMETRY OF LUBIN-TATE SPACES AND SOME COMMENTS AND COMPUTATIONS BY THE SPEAKER.

1 Recollections in characteristic 0

We start by recalling the following result mentioned on Campbell's talk:

Proposition 1.1. Let R be a ring of characteristic 0 (that is, containing \mathbf{Q}). Then for any formal group law $F \in R[[x,y]]$ over R there is a unique power-series $f = t + O(t^2)$ such that

$$fF(x, y) = fx + fy.$$

Corollary 1.2. Any formal group law over a characteristic 0 ring R is isomorphic to $\widehat{\mathbf{G}}_a$. Furthermore, the isomorphisms of this as a formal group is

$$\underline{\mathrm{Isom}}(\widehat{\mathbf{G}}_a,\widehat{\mathbf{G}}_a) = \mathbf{G}_m.$$

Hence, we have that $(\mathcal{M}_{\mathrm{fg}})_{\mathbf{Q}} \cong B\mathbf{G}_m$. To put it another way, the Lie algebra functor

Lie:
$$\mathcal{M}_{fg}(R) \to \operatorname{Pic}(R)$$
, $\mathcal{G} \mapsto \operatorname{Lie}(\mathcal{G}) = \ker \left(\mathcal{G}(R[t]/t^2) \to \mathcal{G}(R) \right)$

is an equivalence. For non-commutative and higher dimensional formal group laws the Baker-Campbell-Hausdorff formula gives also a similar equivalence between Lie algebras over R (a finite projective R-module with a bracket) and formal group laws over R, which we shall not need, hence not explain.

Question 1.3. Suppose that R is not a **Q**-algebra. Are the formal group laws $\widehat{\mathbf{G}}_a$ and $\widehat{\mathbf{G}}_m$ isomorphic?

We will find an easy critereon to distinguish the two when p = 0. For this, we have to start developing some theory.

2 Invariant differentials

Definition 2.1. Let R be a ring. We define the (ad-hoc) module of (continuous) differentials on R[[t]] to be $\Omega = R[[t]]$ dt, the free module on a "variable" dt. If $F \in R[[t]]$ is a formal group-law and $\omega = h$ dt $\in \Omega$ then we define

$$F^*\omega = h(F(x,y)) \left(\frac{\partial F}{\partial x} dx + \frac{\partial F}{\partial y} dy \right) \in R[[x,y]] dx \oplus R[[x,y]] dy$$

The module of invariant differentials with respect to F is defined to be the submodule Ω_F of Ω consisting on those ω such that $F^*\omega = h(x)dx + h(y)dy$.

Remark 2.2. Indeed, one easily checks that the module of *continuous R*-linear derivations

$$\partial: R[[t]] \to R[[t]],$$

where both sides are endowed with the t-adic topology, is one dimensional generated by dt: $\sum_r a_r t^r \mapsto \sum_r r a_r t^{r-1}$. One can also write down a definition of F-invariant differential in this language.

Proposition 2.3. The "taking derivative at 0" morphism $\omega = h(t)dt \mapsto h(0) \in R$ defines an isomorphism

$$\Omega_F \xrightarrow{\sim} \text{Lie}F = R$$
.

Proof. We must solve the differential equations

$$\begin{cases} h(x) = h(x +_F y)\partial_x F \\ h(y) = h(x +_F y)\partial_y F \end{cases}$$

on the initial condition $h(0) = r \in R$. Since F is commutative it is enough to solve, say, the top one.

Now, $0 +_F x = x$ so we have that

$$r = h(0) = h(y) \frac{\partial F}{\partial x}(0, y).$$

Since F(x, y) = x + y + ... we have that $h(y) = r \left(\frac{\partial F}{\partial x}(0, y) \right)^{-1}$.

We must now check that the above is indeed a solution (can assume r = 1). That is, we must check that $\partial_x F(0, F(x, y)) = \partial_x F(0, x) \partial_x F(x, y)$. We now use associativity F(x, F(y, z)) = F(F(x, y), z) and take the derivative at x to get

$$\partial_x F(x, F(y, z)) = \partial_x F(F(x, y), z) \partial_x F(x, y).$$

Taking x = 0, y = x and z = y we magically get the formula we want.

In particular, we see there is a canonical invariant differential associated to any F. For $\widehat{\mathbf{G}}_a$ it is 1 dt, and for $\widehat{\mathbf{G}}_m$ it is $1/(1+t)dt = (1-t+\ldots)dt$.

Definition 2.4. Suppose that $f \in tR[[t]]$. Then we can define

$$f^*: \Omega \to \Omega$$
, $\omega = h(t)dt \mapsto f^*\omega = g(h(t))dh$, $dh = h'(t)dt$.

If f is a morphism $F \to G$ of formal group laws, then f carries invariant forms of G to invariant forms of F.

Proposition 2.5. If ω_F, ω_G are the canonical invariant differentials, we have that

$$h^*\omega_G = \lambda\Omega_F$$

for a unique $\lambda \in R$, and $h(t) = \lambda t + O(t^2)$. If $\lambda = 0$ then

- If R is a **Q**-algebra, then h = 0.
- If R is an $\mathbf{Z}_{(p)}$ -algebra, then $h(t) = h'(t^p)$ for some other $h' \in tR[[t]]$.

Proof. Most of it is straightforward from the previous proposition. We only mention that if $h^*\omega_G = 0$, then if $h = \sum_i h_i t^i$, we have that $ih_i = 0$, hence that $h_i = 0$ in characteristic 0, or that $h_i = 0$ for all i prime to p.

3 Heights

Fix a rational prime p. From now on we work with $\mathbf{Z}_{(p)}$ -algebras R and formal groups over those. We want to understand the geometry of $\mathcal{M}_{fg} \times \mathbf{Z}_{(p)}$.

Definition 3.1. Let F be a formal group law over R. We define $[n] \in R[[t]]$, the n-series of F, by induction:

- [0](t) = 0,
- [n](t) = F([n-1](t), t).

One notes that $\lceil n \rceil(t) = nt + O(t^2)$.

Lemma 3.2. The n-series of F is an endomorpism, that is

$$F(\lceil n \rceil X, \lceil n \rceil Y) = \lceil n \rceil F(X, Y).$$

Proof. Obvious for n = 0. By induction, associativity and commutativity of F we have

$$\begin{split} F(F([n-1]X,X),X), &F(F([n-1]Y,Y),Y) = \\ &F(F([n-1]X,[n-1]Y),F(X,Y)) = \\ &F([n-1]F(X,Y),F(X,Y)) = [n]F(X,Y). \end{split}$$

Using Proposition 2.5 we see that the following definition makes sense.

Definition 3.3. We say that F has height $\geq n$ if there is $\lambda \in R$ such that

$$[p] = \lambda t^{p^n} + O(t^{p^n} + 1).$$

We say that F has height exactly n if λ is invertible. If F has height $\geq n$ for all n we say that F has infinite height.

Remark 3.4. Caution: for shorthand I will sometimes write $\operatorname{ht} F \geq n$ and $\operatorname{ht} F = n$ for the statements that the height of F is $\geq n$ and that the height of F is exactly n. When R is not a field however, there is no "height" $\operatorname{ht} F \in \mathbf{N}$; this is merely notational shorthand.

Remark 3.5. We have that $[p] = pt + O(t^2)$, hence $ht F \ge 0$ and $ht F \ge 1$ if and only if p = 0. Finally ht F = 1 if and only if p is invertible.

Example 3.6. For $\widehat{\mathbf{G}}_a$ we have that [p] = pt, hence it has infinite height. For $\widehat{\mathbf{G}}_m$, we have by induction $[n] = (t+1)^n - 1$. Indeed, for n = 0 this is trivial, and

$$[n+1] = t + [n] + t[n] = t + (t+1)^n - 1 + t(t+1)^n - t = (t+1)^{n+1} - 1.$$

Hence if p = 0 in R, $[p] = t^p$, and we have that $ht \hat{\mathbf{G}}_m = 1$. In particular if R is not a \mathbf{Q} -algebra then $\hat{\mathbf{G}}_m$ and $\hat{\mathbf{G}}_a$ are not isomorphic!

Example 3.7. Let E/\mathbf{F}_p be an elliptic curve, and \widehat{E} be the formal completion at the identity. Then

- E is ordinary if and only the height of \widehat{E} is 1.
- E is supersingular if and only if the height of \widehat{E} is 2.

Example 3.8. Let E/\mathbb{Q}_p be an elliptic curve, and \mathcal{N}/\mathbb{Z}_p be its Néron model: this is in a precise sense the "best approximation" of E by a smooth group scheme, integrally. Let F be the associated group law of $\mathcal{N} \otimes \mathbb{F}_p$ by completing at identity.

- The curve *E* has additive reduction if and only if *F* has infinite height.
- The curve has good supersingular reduction if and only if *F* has height 2.
- If the curve has either multiplicative reduction or good ordinary reduction if and only if the height of *F* is 1.

The following lemma is obvious, and allows us to construct substacks associated to heights.

Lemma 3.9. If $h: F \xrightarrow{\sim} G$ is an isomorphism then $[p]_G = h[p]_F h^{-1}$. In particular, $ht F \ge n$ (resp. ht F = n) if and only if $ht G \ge n$ (resp. ht G = n).

If F is Zariski-locally on R of height $\geq n$ (resp. exactly n) then so is F.

Definition 3.10. We define the moduli stack of formal groups of height $\geq n$ (resp. of height exactly n) to be the substacks

$$\mathcal{M}_{\mathrm{fg}} \times \mathbf{Z}_{(p)} \supset \mathcal{M}_{\mathrm{fg}}^{\geq n} \supset \mathcal{M}_{\mathrm{fg}}^{n}$$

given by those formal groups which are locally given by formal group laws of height $\geq n$ (resp height exactly n). We also define $\mathcal{M}_{fg}^{\infty} = \mathcal{M}_{fg}^{\geq \infty}$ to be the moduli of formal group laws of infinite height.

To be seen: $\mathcal{M}_{\mathrm{fg}}^{\geqq n}$ is a closed substack of $\mathcal{M}_{\mathrm{fg}} \times \mathbf{Z}_{(p)}$ and $\mathcal{M}_{\mathrm{fg}}^n = \mathcal{M}_{\mathrm{fg}}^{\geqq n} - \mathcal{M}_{\mathrm{fg}}^{n-1}$.

3.1 Bonus: extra curiosities about heights

In this small subsection, we assume R is of characteristic p.

Definition 3.11. Let $F = \sum a_{ij} X^i Y^j$ be a formal group law over R. We define $F^{(p)}$ to be the formal group law $\sum a_{ij}^p X^i Y^j$.

Clearly we have a Frobenius morphism $F \to F^{(p)}$ given by $T^p \in TR[[T]]$.

Proposition 3.12. The height h of F is the least integer such that [p] factors as

$$[p]: F \to F^{(p^h)} \to F$$

Proof. Indeed, the morphism $h': F^{(p^h)} \to F$ is given by Proposition 2.5.

Remark 3.13. From this, one deduces Examples 3.7 and 3.8.

Lemma 3.14. Let \mathcal{G} be a formal group over R. If \mathcal{G} has height exactly n, then $\mathcal{G}[p] = \ker([p]: \mathcal{G} \to \mathcal{G})$ is representable by a finite-flat group scheme of order p^n . If the height of \mathcal{G} is infinite then $\mathcal{G}[p]$ is not finite-flat.

Proof. The result is local so we can assume that \mathcal{G} is a formal group law. Then we can write $\mathcal{G}[p] = \operatorname{Spec} R[[t]]/\langle [p](t)\rangle$, and then it is generated as an R-module by $1,t,\ldots,t^{p-1}$. (If the height is infinite, then the result is clear.)

Hence we have another characterization of the height (both of which make sense in higher dimensions). It should be mentioned that this last lemma entails that $\mathcal{G}[p]$ is finite-flat if and only if the height is finite. This condition is equivalent to \mathcal{G} being p-divisible.

A Theorem of Tate says that p-divisible formal groups over \mathbf{Z}_p (or any complete DVR) are equivalent to connected p-divisible groups! The reader is invited to take an educated guess as to which p-divisible group \widehat{E} corresponds to.

4 The geometry of \mathcal{M}_{fg}

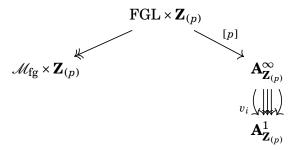
Putting together the first section of this lecture and Proposition 2.5, we have that

Proposition 4.1. The moduli \mathcal{M}_{fg}^0 of formal groups of height exactly zero is isomorphic to the open substack

$$\mathcal{M}_{\mathrm{fg}}^0 \cong B\mathbf{G}_m \otimes \mathbf{Q} \cong \mathcal{M}_{\mathrm{fg}} \otimes \mathbf{Q} \hookrightarrow \mathcal{M}_{\mathrm{fg}} \times \mathbf{Z}_{(p)}.$$

The moduli $\mathcal{M}_{fg}^{\geq 1}$ of formal groups with height ≥ 1 is isomorphic to the reduction $\mathcal{M}_{fg} \otimes \mathbf{F}_p$.

Since we are working over $\mathbf{Z}_{(p)}$ we can write $[p] = \sum v_n t^{p^n}$. Now let $\mathbf{A}_{\mathbf{Z}_{(p)}}^{\infty}$ be the functor over $\mathbf{Z}_{(p)}$ sending $R \mapsto \{\sum_{n=1} r_n t^{p^n}\}$. Then we have in diagram form



All this to say that v_i determine canonical elements in the Lazard ring. That is if F_u is the universal formal group law over L, then

$$[p]_{F_u} = \sum v_n t^{p^n}$$

for canonical elements $v_n \in L \otimes \mathbf{Z}_{(p)}$.

Here is the last technical proposition of today:

Proposition 4.2. The elemnents v_n have degree $k = p^n - 1$. There is a set of generators of L over $\mathbf{Z}_{(p)}$

$$L \otimes \mathbf{Z}_{(p)} = \mathbf{Z}_{(p)}[t_1, t_2, \dots]$$

such that $t_k = v_n$. More precisely, before localizing, one has $v_n = (p^k - 1)\bar{t}_k \in \mathbf{Z}\bar{t}_k \cong (I/I^2)_k$, for $k = p^n - 1$ where I is the ideal of positively graded elements in L.

Proof. We need to recall some details from the construction of the Lazard ring. We constructed a formal group law in the square-zero extension $\mathbf{Z} \oplus (I/I^2)_k$ coming from the key-lemma, essentially:

$$F = X + Y + \bar{t}_k C_{p^n}(X, Y).$$

for \bar{t}_k the generator of $(I/I^2)_k$.

Recalling the definition of C_{p^n} we have

$$F = X + Y + \frac{\bar{t}_k}{p} \left((X + Y)^{p^n} - X^{p^n} - Y^{p^n} \right)$$

Claim: the *a*-series of *F* is $[a] = at + \frac{\bar{t}_k}{p}((at)^{p^n} - at^{p^n})$. Indeed, it is obvious for a = 0 and if it is true for *a* then [a+1] =

$$t+at+\frac{\bar{t}_k}{p}((at)^{p^n}-at^{p^n})+\frac{\bar{t}_k}{p}\left((t+at+\frac{\bar{t}_k}{p}\left((at)^{p^n}-at^{p^n})\right)^{p^n}-t^{p^n}-\left(at+\frac{\bar{t}_k}{p}((at)^{p^n}-at^{p^n})\right)^{p^n}\right).$$

If this obscene equation seems hopeless, remember that \bar{t}_k is in fact a square-zero element, which means we can clear out the terms to get

$$(a+1)t + \frac{\bar{t}_k}{p}((at)^{p^n} - at^{p^n}) + \frac{\bar{t}_k}{p}\Big(((a+1)t)^{p^n} - t^{p^n} - (at)^{p^n}\Big) = (a+1)t + \frac{\bar{t}_k}{p}(((a+1)t)^{p^n} - (a+1)t^{p^n}).$$

Taking a = p yields the desired result.

Corollary 4.3. The stack $\mathcal{M}_{\mathrm{fg}}^{\geq n} \subset \mathcal{M}_{\mathrm{fg}}$ is a closed substack, and we have $\mathcal{M}_{\mathrm{fg}}^{n} = \mathcal{M}_{\mathrm{fg}}^{\geq n} - \mathcal{M}_{\mathrm{fg}}^{\geq n+1}$.

Proof. Indeed, it is enough to check this after pulling back to the cover $\mathrm{FGL} \twoheadrightarrow \mathscr{M}_{\mathrm{fg}}$. Now the first stack is just the vanishing of v_0,\ldots,v_{n-1} and the second is given by this and inverting v_n : Indeed, for height ≥ 1 this is just the fact that $v_0 = p$, and for greater heights we can assume R is an \mathbf{F}_p -algebra, and $F \in \mathrm{FGL}(R)$ corresponds to a morphism

$$L \to R$$
, $F = F_u \otimes_L R$,

where F_u is the universal group law, as before. Hence the *p*-series of F is

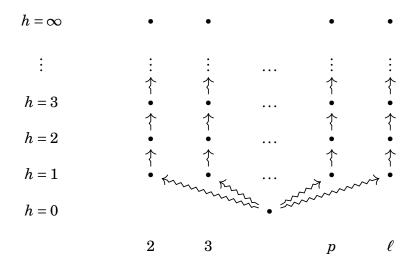
$$[p]_F = \sum_n f(v_n) t^{p^n}$$

where the $v_n \in L$ as above, hence the claim.

Finally, we can tease a bit the results of next talk: from the proposition above it follows that the strata \mathcal{M}_{fg}^n $(n = 1, 2, ..., \infty)$ are non-empty. What is surprising is that, in fact, they are isomorphic to the classifying stack of a group scheme \mathbf{G}_n , the *Morava stabilizer group*.

Recall that any algebraic stack \mathscr{X} has an underlying topological space $|\mathscr{X}|$ whose points are given by equivalence classes of field morphisms $\operatorname{Spec} K \to \mathscr{X}$: that is $|\mathscr{X}|$ is the union of $\mathscr{X}(K)$ modulo isomorphism over some extension of k (eg. |BG| always has one point). The topology is induced as the quotient topology of a presentation.

Our stack \mathcal{M}_{fg} is not algebraic, but it still has a presentation, so we can still define $|\mathcal{M}_{fg}| = |FGL|/|G^+|$ (cf. section [04XE] on the Stacks Project). Hence, we can draw the underlying topological space of \mathcal{M}_{fg} thus:



The topological space $|\mathcal{M}_{\mathrm{fg}}|$.

By no coincidence, this is in fact isomorphic to the Balmer's spectrum of the tensor-triangulated category of finite spectra! A surprising connection with algebraic topology which shows that, in some sense, $\mathbf{S} \to MU$ should be a "cover" of \mathbf{E}_{∞} -rings. (Whatever this MU is, one knows that $\pi_*(MU)$ is the Lazard ring, but the map $\mathbf{S} \to MU$ is not flat in any reasonable way.)

Remark 4.4. The elements v_i are *not* elements in $\Gamma(\mathcal{M}_{\mathrm{fg}}, \mathcal{O}_{\mathcal{M}_{\mathrm{fg}}})$. Rather, they are sections of a tensor power of the Lie algebra line bundle $\omega \colon F \mapsto \mathrm{Lie}(F) \in \mathrm{Pic}(R)$, that is

$$v_i \in \Gamma(\mathcal{M}_{\mathrm{fg}}, \omega^{\otimes p^n - 1}).$$

This reminds me of modular forms.