
THE HEIGHT STRATIFICATION ON THE MODULI

OF FORMAL GROUPS

November 13th, 2025

THESE ARE THE NOTES FOR A TALK ON THE ESAGA RESEARCH SEMINAR ON THE MODULI OF FORMAL GROUPS AND
APPLICATIONS TO STABLE HOMOTOPY THEORY. THIS TALK IS ESSENTIALLY JUST A COPY FROM J. LURIE’S LECTURES ON
CHROMATIC HOMOTOPY THEORY, SPLICED WITH IDEAS AND PROOFS FROM L. FARGUES’ COURSE ON THE GEOMETRY OF

LUBIN-TATE SPACES AND SOME COMMENTS AND COMPUTATIONS BY THE SPEAKER.

1 Recollections in characteristic 0

We start by recalling the following result mentioned on Campbell’s talk:

Proposition 1.1. Let R be a ring of characteristic 0 (that is, containing Q). Then for
any formal group law F ∈ R[[x, y]] over R there is a unique power-series f = t+O(t2)
such that

f F(x, y)= f x+ f y.

Corollary 1.2. Any formal group law over a characteristic 0 ring R is isomorphic to
Ĝa. Furthermore, the isomorphisms of this as a formal group is

Isom(Ĝa,Ĝa)=Gm.

Hence, we have that (Mfg)Q ∼= BGm. To put it another way, the Lie algebra
functor

Lie: Mfg(R)→Pic(R), G 7→Lie(G )= ker
(
G (R[t]/t2)→G (R)

)
is an equivalence. For non-commutative and higher dimensional formal group laws
the Baker-Campbell-Hausdorff formula gives also a similar equivalence between Lie
algebras over R (a finite projective R-module with a bracket) and formal group laws
over R, which we shall not need, hence not explain.

Question 1.3. Suppose that R is not a Q-algebra. Are the formal group laws Ĝa
and Ĝm isomorphic?

We will find an easy critereon to distinguish the two when p = 0. For this, we
have to start developing some theory.
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2 Invariant differentials

Definition 2.1. Let R be a ring. We define the (ad-hoc) module of (continuous) differ-
entials on R[[t]] to be Ω= R[[t]]dt, the free module on a “variable” dt. If F ∈ R[[t]] is
a formal group-law and ω= hdt ∈Ω then we define

F∗ω= h(F(x, y))
(
∂F
∂x

dx+ ∂F
∂y

dy
)
∈ R[[x, y]]dx⊕R[[x, y]]dy

The module of invariant differentials with respect to F is defined to be the submodule
ΩF of Ω consisting on those ω such that F∗ω= h(x)dx+h(y)dy.

Remark 2.2. Indeed, one easily checks that the module of continuous R-linear
derivations

∂ : R[[t]]→ R[[t]],

where both sides are endowed with the t-adic topology, is one dimensional generated
by dt :

∑
r ar tr 7→ ∑

r rar tr−1. One can also write down a definition of F-invariant
differential in this language.

Proposition 2.3. The “taking derivative at 0” morphism ω = h(t)dt 7→ h(0) ∈ R de-
fines an isomorphism

ΩF
∼−→LieF = R.

Proof. We must solve the differential equations{
h(x)= h(x+F y)∂xF
h(y)= h(x+F y)∂yF

on the initial condition h(0) = r ∈ R. Since F is commutative it is enough to solve,
say, the top one.

Now, 0+F x = x so we have that

r = h(0)= h(y)
∂F
∂x

(0, y).

Since F(x, y)= x+ y+ . . . we have that h(y)= r
(
∂F
∂x (0, y)

)−1
.

We must now check that the above is indeed a solution (can assume r = 1). That
is, we must check that ∂xF(0,F(x, y)) = ∂xF(0, x)∂xF(x, y). We now use associativity
F(x,F(y, z))= F(F(x, y), z) and take the derivative at x to get

∂xF(x,F(y, z))= ∂xF(F(x, y), z)∂xF(x, y).

Taking x = 0, y= x and z = y we magically get the formula we want.

In particular, we see there is a canonical invariant differential associated to any
F. For Ĝa it is 1d t, and for Ĝm it is 1/(1+ t)dt = (1− t+ . . . )dt.

Definition 2.4. Suppose that f ∈ tR[[t]]. Then we can define

f ∗ : Ω→Ω, ω= h(t)dt 7→ f ∗ω= g(h(t))dh, dh = h′(t)dt.

If f is a morphism F →G of formal group laws, then f carries invariant forms of G
to invariant forms of F.
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Proposition 2.5. If ωF ,ωG are the canonical invariant differentials, we have that

h∗ωG =λΩF

for a unique λ ∈ R, and h(t)=λt+O(t2). If λ= 0 then

• If R is a Q-algebra, then h = 0.

• If R is an Z (p)-algebra, then h(t)= h′(tp) for some other h′ ∈ tR[[t]].

Proof. Most of it is straightforward from the previous proposition. We only mention
that if h∗ωG = 0, then if h = ∑

i hi ti, we have that ihi = 0, hence that hi = 0 in
characteristic 0, or that hi = 0 for all i prime to p.

3 Heights

Fix a rational prime p. From now on we work with Z (p)-algebras R and formal
groups over those. We want to understand the geometry of Mfg ×Z (p).

Definition 3.1. Let F be a formal group law over R. We define [n] ∈ R[[t]], the n-
series of F, by induction:

• [0](t)= 0,

• [n](t)= F([n−1](t), t).

One notes that [n](t)= nt+O(t2).

Lemma 3.2. The n-series of F is an endomorpism, that is

F([n]X , [n]Y )= [n]F(X ,Y ).

Proof. Obvious for n = 0. By induction, associativity and commutativity of F we
have

F(F([n−1]X , X ), X ),F(F([n−1]Y ,Y ),Y )=
F(F([n−1]X , [n−1]Y ),F(X ,Y ))=

F([n−1]F(X ,Y ),F(X ,Y ))= [n]F(X ,Y ).

Using Proposition 2.5 we see that the following definition makes sense.

Definition 3.3. We say that F has height ≧ n if there is λ ∈ R such that

[p]=λtpn +O(tpn +1).

We say that F has height exactly n if λ is invertible. If F has height ≧ n for all n we
say that F has infinite height.

Remark 3.4. Caution: for shorthand I will sometimes write htF ≧ n and htF = n
for the statements that the height of F is ≧ n and that the height of F is exactly n.
When R is not a field however, there is no "height" htF ∈N; this is merely notational
shorthand.
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Remark 3.5. We have that [p] = pt+O(t2), hence htF ≧ 0 and htF ≧ 1 if and only
if p = 0. Finally htF = 1 if and only if p is invertible.

Example 3.6. For Ĝa we have that [p] = pt, hence it has infinite height. For Ĝm,
we have by induction [n]= (t+1)n −1. Indeed, for n = 0 this is trivial, and

[n+1]= t+ [n]+ t[n]= t+ (t+1)n −1+ t(t+1)n − t = (t+1)n+1 −1.

Hence if p = 0 in R, [p] = tp, and we have that htĜm = 1. In particular if R is not a
Q-algebra then Ĝm and Ĝa are not isomorphic!

Example 3.7. Let E/Fp be an elliptic curve, and Ê be the formal completion at the
identity. Then

• E is ordinary if and only the height of Ê is 1.

• E is supersingular if and only if the height of Ê is 2.

Example 3.8. Let E/Qp be an elliptic curve, and N /Zp be its Néron model: this is in
a precise sense the “best approximation” of E by a smooth group scheme, integrally.
Let F be the associated group law of N ⊗Fp by completing at identity.

• The curve E has additive reduction if and only if F has infinite height.

• The curve has good supersingular reduction if and only if F has height 2.

• If the curve has either multiplicative reduction or good ordinary reduction if
and only if the height of F is 1.

The following lemma is obvious, and allows us to construct substacks associated
to heights.

Lemma 3.9. If h : F ∼−→ G is an isomorphism then [p]G = h[p]F h−1. In particular,
htF ≧ n (resp. htF = n) if and only if htG ≧ n (resp. htG = n).

If F is Zariski-locally on R of height ≧ n (resp. exactly n) then so is F.

Definition 3.10. We define the moduli stack of formal groups of height ≧ n (resp. of
height exactly n) to be the substacks

Mfg ×Z (p) ⊃M
≧n
fg ⊃M n

fg

given by those formal groups which are locally given by formal group laws of height
≧ n (resp height exactly n). We also define M∞

fg = M
≧∞
fg to be the moduli of formal

group laws of infinite height.

To be seen: M
≧n
fg is a closed substack of Mfg ×Z (p) and M n

fg =M
≧n
fg −M n−1

fg .

3.1 Bonus: extra curiosities about heights
In this small subsection, we assume R is of characteristic p.

Definition 3.11. Let F =∑
ai j X iY j be a formal group law over R. We define F (p) to

be the formal group law
∑

ap
i j X

iY j.
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Clearly we have a Frobenius morphism F → F (p) given by T p ∈ TR[[T]].

Proposition 3.12. The height h of F is the least integer such that [p] factors as

[p] : F → F (ph) → F

Proof. Indeed, the morphism h′ : F (ph) → F is given by Proposition 2.5.

Remark 3.13. From this, one deduces Examples 3.7 and 3.8.

Lemma 3.14. Let G be a formal group over R. If G has height exactly n, then
G [p] = ker([p] : G →G ) is representable by a finite-flat group scheme of order pn.
If the height of G is infinite then G [p] is not finite-flat.

Proof. The result is local so we can assume that G is a formal group law. Then
we can write G [p] = SpecR[[t]]/〈[p](t)〉, and then it is generated as an R-module by
1, t, . . . , tp−1. (If the height is infinite, then the result is clear.)

Hence we have another characterization of the height (both of which make sense
in higher dimensions). It should be mentioned that this last lemma entails that G [p]
is finite-flat if and only if the height is finite. This condition is equivalent to G being
p-divisible.

A Theorem of Tate says that p-divisiible formal groups over Zp (or any complete
DVR) are equivalent to connected p-divisible groups! The reader is invited to take
an educated guess as to which p-divisible group Ê corresponds to.

4 The geometry of Mfg

Putting together the first section of this lecture and Proposition 2.5, we have that

Proposition 4.1. The moduli M 0
fg of formal groups of height exactly zero is isomor-

phic to the open substack

M 0
fg
∼= BGm ⊗Q∼=Mfg ⊗Q ,→Mfg ×Z (p).

The moduli M
≧1
fg of formal groups with height ≧ 1 is isomorphic to the reduction

Mfg ⊗Fp.

Since we are working over Z (p) we can write [p] = ∑
vntpn

. Now let A∞
Z (p)

be the

functor over Z (p) sending R 7→ {
∑

n=1 rntpn
}. Then we have in diagram form

FGL×Z (p)

Mfg ×Z (p) A∞
Z (p)

A1
Z (p)

[p]

vi

All this to say that vi determine canonical elements in the Lazard ring. That is if Fu
is the universal formal group law over L, then

[p]Fu =
∑

vntpn

for canonical elements vn ∈ L⊗Z (p).
Here is the last technical proposition of today:
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Proposition 4.2. The elemnents vn have degree k = pn −1. There is a set of genera-
tors of L over Z (p)

L⊗Z (p) =Z (p)[t1, t2, . . . ]

such that tk = vn. More precisely, before localizing, one has vn = (pk −1)t̄k ∈ Zt̄k
∼=

(I/I2)k, for k = pn −1 where I is the ideal of positively graded elements in L.

Proof. We need to recall some details from the construction of the Lazard ring. We
constructed a formal group law in the square-zero extension Z⊕ (I/I2)k coming from
the key-lemma, essentially:

F = X +Y + t̄kCpn(X ,Y ).

for t̄k the generator of (I/I2)k.
Recalling the definition of Cpn we have

F = X +Y + t̄k

p

(
(X +Y )pn − X pn −Y pn

)
Claim: the a-series of F is [a] = at+ t̄k

p ((at)pn −atpn
). Indeed, it is obvious for a = 0

and if it is true for a then [a+1]=

t+at+ t̄k

p
((at)pn−atpn

)+ t̄k

p

(
(t+at+ t̄k

p

(
(at)pn −atpn

)
)pn

− tpn −
(
at+ t̄k

p
((at)pn −atpn

)
)pn)

.

If this obscene equation seems hopeless, remember that t̄k is in fact a square-zero
element, which means we can clear out the terms to get

(a+1)t+ t̄k

p
((at)pn −atpn

)+ t̄k

p

(
((a+1)t)pn − tpn − (at)pn

)
=

(a+1)t+ t̄k

p
(((a+1)t)pn − (a+1)tpn

).

Taking a = p yields the desired result.

Corollary 4.3. The stack M
≧n
fg ⊂Mfg is a closed substack, and we have M n

fg =M
≧n
fg −

M
≧n+1
fg .

Proof. Indeed, it is enough to check this after pulling back to the cover FGL↠Mfg.
Now the first stack is just the vanishing of v0, . . . ,vn−1 and the second is given by
this and inverting vn: Indeed, for height ≧ 1 this is just the fact that v0 = p, and for
greater heights we can assume R is an Fp-algebra, and F ∈ FGL(R) corresponds to
a morphism

L → R, F = Fu ⊗L R,

where Fu is the universal group law, as before. Hence the p-series of F is

[p]F =∑
n

f (vn)tpn

where the vn ∈ L as above, hence the claim.

6



Finally, we can tease a bit the results of next talk: from the proposition above
it follows that the strata M n

fg (n = 1,2, . . . ,∞) are non-empty. What is surprising is
that, in fact, they are isomorphic to the classifying stack of a group scheme Gn, the
Morava stabilizer group.

Recall that any algebraic stack X has an underlying topological space |X | whose
points are given by equivalence classes of field morphisms SpecK →X : that is |X |
is the union of X (K) modulo isomorphism over some extension of k (eg. |BG| always
has one point). The topology is induced as the quotient topology of a presentation.

Our stack Mfg is not algebraic, but it still has a presentation, so we can still
define |Mfg| = |FGL|/|G+| (cf. section [04XE] on the Stacks Project). Hence, we can
draw the underlying topological space of Mfg thus:

h =∞ • • • •

...
...

... . . .
...

...

h = 3 • • . . . • •

h = 2 • • . . . • •

h = 1 • • . . . • •

h = 0 •

2 3 p ℓ

THE TOPOLOGICAL SPACE |Mfg|.

By no coincidence, this is in fact isomorphic to the Balmer’s spectrum of the
tensor-triangulated category of finite spectra! A surprising connection with alge-
braic topology which shows that, in some sense, S → MU should be a “cover” of
E∞-rings. (Whatever this MU is, one knows that π∗(MU) is the Lazard ring, but
the map S→ MU is not flat in any reasonable way.)

Remark 4.4. The elements vi are not elements in Γ(Mfg,OMfg). Rather, they are
sections of a tensor power of the Lie algebra line bundle ω : F 7→Lie(F) ∈Pic(R), that
is

vi ∈Γ(Mfg,ω⊗pn−1).

This reminds me of modular forms.
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