
On Hirzebruch-Zagier divisors
Thiago Solovera e Nery

This talk will start by fixing a prime 𝑝 congruent to 1 mod 4
and the subfield Q(√𝑝) ⊂ R. Let 𝜔 = (1 + √𝑝)/2 and 𝔒 = Z[𝜔] the ring of
integers of this number field. We denote by 𝜆 ↦ 𝜆′ the conjugation
in this real quadratic field and by 𝜒𝑝 the quadratic character
associated to 𝑝.

Let Γ be the group SL2(𝔒).

1 The Hilbert Modular Surface
The Hilbert modular surface (with respect to SL2(𝔒) is defined to
be the quotient

𝑌 = ℌ2/SL2(𝔒)

of which we constructed a compactification 𝑌 ⊂ 𝑋 by adding cusps,
and let 𝑋 → 𝑋 be a resolution of the cusp singularities.

Thus 𝑋 contains 𝑋 and the complement 𝑋 − 𝑋 consists of curves
𝑆𝑘 in cyclic fashion (cf. Jie Lin’s talk). This is not a smooth
surface as 𝑋 is still singular but its singularities are mild: they
are isolated quotient singularities by cyclic groups (of orders 2,
3 or 5).

In particular 𝑋 and 𝑋 are rational homology manifolds, (ie. for
each point 𝑥 ∈ 𝑋 the local rational homology groups H𝑖

𝑥(𝑋) are 0 for
𝑖 ≠ 4 and Q for 𝑖 = 4). And hence one can do intersection theory
with rational coefficients: more precisely one proceeds naively
but must divide by the order of the stabilizer at singular points.

Proposition 1. Let 𝑋, 𝑋 be as above. Then the pushforward in
homology induces an orthogonal decomposition

H2(𝑋) = H2(𝑋) ⨁Q ⟨𝑆𝑘⟩

with respect to the intersection form.
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Remark. Since 𝑋 ⊂ 𝑋 is open, the pushforward does not preserve the
intersection product. However if 𝑇 is a cycle in 𝑋 then we can
compactify it to obtain a cycle 𝑇 in H2(𝑋) and 𝑇𝑐 its projection on
the first factor (ie. image of 𝑇 in 𝑋). Now write

𝑇𝑐 = 𝑇 + ∑
𝑘

𝛼(𝑇, 𝑘)𝑆𝑘

and we get that, if (𝑇.𝑆)∞ = (𝑇.𝑆)𝑋−𝑋 + ∑𝑘 𝛼(𝑇, 𝑘)𝛼(𝑆, 𝑗)(𝑆𝑘.𝑆𝑗)𝑋, that

(𝑇.𝑆)𝑋 = (𝑇𝑐.𝑆𝑐)𝑋 − (𝑇.𝑆)∞.

Our goal is to sketch a proof of the following theorem by
Hirzebruch-Zagier (1977):

Theorem 1. There exist certain specified cycles 𝑇𝑁 ∈ H2(𝑋) such that
for each homology class 𝐾 in H2(𝑋) in the subspace generated by the
𝑇𝑐

𝑁 the function

Φ𝐾(𝜏) =
∞
∑
𝑁=0

(𝑇𝑐
𝑁 .𝐾)𝑋 𝑞𝑁 (𝑞 = exp(2𝜋𝑖𝜏), 𝜏 ∈ ℌ)

is a modular form of weight 2, level 𝑝 and “Nebentypus” character
𝜒𝑝, the Legendre symbol extended to Z.

2 Hirzebruch-Zagier cycles
Consider the lattice 𝔐 given by skew-hermitean matrices 𝐴 in 𝑀2(𝔒),
that is, with 𝐴𝑡 = −𝐴′. Concretely, an element it is given by

𝐴 = [𝑎√𝑝 𝜆
−𝜆′ 𝑏√𝑝] , 𝑎, 𝑏 ∈ Z, 𝜆 ∈ 𝔒.

If 𝐴 ∈ 𝔐 we define the subvariety 𝐹(𝐴) ⊂ ℌ × ℌ to be

𝐹(𝐴) = 𝑉(𝐴(𝑧1, 𝑧2)) = 𝑉(𝑎√𝑝𝑧1𝑧2 + 𝜆𝑧2 − 𝜆′𝑧1 + 𝑏√𝑝).

Here are some properties:

Lemma 1. If 𝐹(𝐴) is non-empty then det𝐴 = 𝑁 = 𝑎𝑏𝑝 + 𝜆𝜆′ > 0. Further-
more, in that case 𝐹(𝐴) is the following graph

𝐹(𝐴) = {(𝑧, 𝐼𝐴𝑧) | 𝑧 ∈ ℌ} ⊂ ℌ × ℌ
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of the fractional transformation defined by

𝐼𝐴 = [0 −1
1 0 ] .𝐴 = [ 𝜆′ −𝑏√𝑝

𝑎√𝑝 𝜆 ]

and det𝐴 = 𝑁 is a quadratic residue modulo 𝑝 (of couse, 0 is also
allowed).

We define now for 𝑁 > 0 the divisors

𝐹𝑁 = ∑
det𝐴=𝑛

𝐴 primitive

𝐹(𝐴), 𝑇𝑛 = ∑
det𝐴=𝑛

𝐹(𝐴).

Which (we’ll prove shortly) is Γ-equivariant and descends to a
cycle in 𝑋. As happened before in the seminar (in the case “𝑝 = 1”)
we have that

𝑇𝑁 = ∑
𝑀2|𝑁

𝐹𝑁/𝑀2

and 𝑇𝑁 intersects 𝑇𝑀 transversely if and only if 𝑀𝑁 is a square.

Remark. The cycle 𝑇𝑝𝑛 admits the following moduli interpretation: it
parametrizes polarized abelian surfaces (with real multiplication
by Γ) that admit a special endomorphism.

Our first goal in the seminar is to compute the “away-from-cusps”
part of the intersection, which we may do on 𝑋 itself. For this
we need to analyze the points in which 𝑇𝑁 and 𝑇𝑀 (equiv. 𝐹𝑁 and
𝐹𝑀) meet.

Definition 1. Let 𝑧 = (𝑧1, 𝑧2) ∈ ℌ × ℌ. We define

𝔐𝑧 = {𝐴 ∈ 𝔐 | 𝐴(𝑧) = 0} = {𝐴 | 𝑧 ∈ 𝐹(𝐴)}.

Then 𝔐𝑧 ≦ 𝔐 is a direct summand (hence a lattice) of rank 0, 1 or
2. In the latter case, we say that 𝑧 is special.

Proof. Notice that the quadratic form det ∶ 𝔐 → Z, ie.

𝐴 ↦ 𝑎𝑏𝑝 + 𝜆𝜆′

has sign (+, −, +, −) over the reals. Hence the statement about the
rank follows from Sylvester’s Law, since we mentioned that det(𝑀) > 0
whenever 𝐹(𝐴) is non-empty.
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Lemma 2. The group Γ acts on 𝔐 via 𝐴𝛾 = 𝛾𝑡𝐴𝛾′ which preserves the
determinant. This action then satisfies

𝐴𝛾−1(𝑧) = 𝐴(𝛾𝑧), 𝐹(𝐴) = 𝐹(𝐴𝛾−1)

and hence 𝑇𝐴 and 𝐹𝐴 are Γ-invariants and

( )𝛾−1 ∶ 𝔐𝛾𝑧
∼
Ý→ 𝔐𝑧

is an isomorphism of oriented quadratic spaces.

Proof. It is a matter of matrix computations and going through the
definitions, so we ommit it. Crucially, one uses that 𝐼−1𝛾𝐼 = 𝛾−𝑡.

In particular for each 𝔷 ∈ 𝑋 one can talk about 𝔐𝔷 (up to
isomorphism), of 𝜙𝔷 (up to equivalence), and whether 𝔷 is a special
point. There is a finite number of special points on 𝑋 with a
fixed form 𝜙𝔷.

The cycles 𝑇𝑁 admit some Shimura theoretic interpretation up to
some branching. For example 𝑋(1) ↠ 𝐹1 is a branched map. Assume
that 𝜒𝑝(𝑁) = 1, on which case 𝑇𝑁 non-empty. Write 𝑁 = 𝑁0𝑁1 where
𝑁𝑖 is a product of primes 𝑞 with 𝜒𝑝(𝑞) = 𝑖. Then 𝐹𝑁 is the branched
image of ℌ/Γ where Γ is the group of units in an order in some
indefinite quaternion algebra (ramified at 𝑞𝑖). It is compact if
and only if 𝑟 > 0.

3 The transverse intersection case
We can now say something about the intersection of the 𝑇𝑁 and 𝑇𝑀.
We compute first the contribution coming from the components of 𝑇𝑁
and 𝑇𝑀 meeting transversally (which amount to everything in case
𝑁𝑀 is not a square).

Suppose that 𝔷 is a point of 𝑋 on which 𝐹(𝐴) and 𝐹(𝐵) meet. Then
we have two vectors 𝐴, 𝐵 on 𝔐𝔷 which are liniearly independent if
𝐹(𝐴) is not equal to 𝐹(𝐵), and hence 𝔷 is special.

Proposition 2. The local transverse intersection number of 𝑇𝑁 and
𝑇𝑀 at a special point 𝔷 is

(𝑇𝑁 .𝑇𝑀)tr𝔷 = 1
𝑣𝔷

∣{(𝐴, 𝐵) ∈ 𝔐2
𝔷 | or. basis with 𝜙𝔷(𝐴) = 𝑁, 𝜙𝔷(𝐵) = 𝑀}∣
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where 𝑣𝔷 is the order of the centralizer of 𝔷 in Γ. Putting it
all together we have that the total transverse intersection number
(that is, ignoring the common factors in the case 𝑀𝑁 = ˝) we have

(𝑇𝑁 .𝑇𝑀)tr𝑋 = ∑
𝑏∈Z

𝑏2<4𝑀𝑁
𝑏2=4𝑀𝑁 mod 𝑝

𝑠0(𝑀, 𝑏, 𝑁),

with 𝑠0(𝑀, 𝑏, 𝑁) being the number of oriented bases (𝐴, 𝐵) such that
𝜙𝔷(𝑚𝐴, 𝑛𝐵) = 𝑀𝑚2 + 𝑏𝑚𝑛 + 𝑁𝑛2.

Proof (sketch). By the discussion above, the first statement fol-
lows. Each basis (𝐴, 𝐵) then pulls back the determinant form to

𝜙𝔷(𝑚𝐴, 𝑏𝐵) = 𝑀2𝑚 + 𝑏𝑚𝑛 + 𝑁𝑛2

where 𝑏 is to be determined. A computation shows that the quadratic
form 𝜙𝔷 is pos. def. and has discriminant divisible by 𝑝, hence

4𝑀𝑁 − 𝑏2 > 0, 4𝑀𝑁 − 𝑏2 = 0 mod 𝑝.

Further analysis shows that any such form is a sub quadratic space
of 𝔐𝔷.

Theorem 2. Let 𝑀, 𝑁 be positive integers with 𝑣𝑝(𝑁) ≦ 𝑣𝑝(𝑀). Then
the transverse intersection number of 𝑇𝑀 and 𝑇𝑁 is equal to

(𝑇𝑁 .𝑇𝑀)tr𝑋 = 1
2 ∑

𝑑|(𝑀,𝑁)
(𝑑𝜒𝑝(𝑑) + 𝑑𝜒𝑝(𝑁/𝑑)) 𝐻0

𝑝(𝑀𝑁/𝑑2),

where 𝐻0
𝑝(𝑁) = ∑ 𝐻(4𝑁−𝑥2

𝑝 ), with the sum ranging over the integers 𝑥
with 𝑥2 < 4𝑁 and 𝑥2 = 4𝑁 mod 𝑝, and 𝐻(𝑘) the number of quadratic forms
with fixed discriminant −𝑘 (counted with multiplicity).

3.1 The self intersection
Very briefly, we mention that the self intersection of these divi-
sors yields a similar formula, but we define 𝐻𝑝(𝑛) = 𝐻0

𝑝(𝑛) if 𝑛 is
not a square and 𝐻𝑝(˝) = 𝐻𝑝(0) − 1

6. Then

(𝑇𝑁 .𝑇𝑀)𝑋 = 1
2 ∑

𝑑|(𝑀,𝑁)
(𝑑𝜒𝑝(𝑑) + 𝑑𝜒𝑝(𝑁/𝑑)) 𝐻𝑝(𝑀𝑁/𝑑2)
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holds.
The proof is essentially the adjunction formula, execept that we

have some mild singularities to take care of. Crucially, one uses
that

vol(𝑇𝑁) = 𝜁(−1) ∑
𝑑|𝑁

(𝑑𝜒𝑝(𝑑) + 𝑑𝜒𝑝(𝑁/𝑑))

4 Cusp contribution
As mentioned in the introduction we can write

𝑇𝑐
𝑁 = 𝑇𝑁 + ∑

𝑘
𝛼(𝑁, 𝑘)𝑆𝑘 ∈ H2(𝑋)

making 𝑇𝑐
𝑁 ortogonal to 0. To explicitly compute the rational

numbers 𝛼(𝑁, 𝑘) we need to invert the matrix (𝑆𝑖.𝑆𝑗)𝑋.

Proposition 3. The inverse of the matrix intersection matrix (𝑆𝑖.𝑆𝑗)𝑋
is given by (−𝑓 (𝔞𝑘𝔞′

𝑙)) with 𝑓 (𝔞) = 0 if 𝔞 is not principal and

𝑓 (𝔞) = 1
√𝑝

∑
(𝜆)=𝔞
𝜆>>0

min(𝜆, 𝜆′).

Here, 𝔞−1
𝑘 = 𝑤𝑘Z+ Z and 𝑤𝑘 is the quadratic irrationality associated

with 𝑘 as defined in last lecture1.

Remark. The fact that 𝑓 (𝔞) = 0 for non-principal ideals tells us that
we may assume that the inverse matrix is a block matrix on each
cycle, as expected.

Now put

(𝑇𝑁 .𝑇𝑀)∞ = (𝑇𝑁 .𝑇𝑀)𝑋−𝑋 + ∑
𝑘,𝑙

𝑓 (𝔞𝑘𝔞′
𝑙)(𝑆𝑘.𝑇𝑀)(𝑆𝑙.𝑇𝑁).

Theorem 3. The infinite part of the intersection multiplicity is
given by

(𝑇𝑁 .𝑇𝑀)∞ = ∑
𝑁(𝔞)=𝑁
𝑁(𝔟)=𝑀

𝑓 (𝔞𝔟′) = ∑
𝑑|(𝑎,𝑏)

𝑑𝜒𝑝(𝑑)𝐼𝑝(𝑀𝑁/𝑑2).

1In terms of the cycles 𝑆𝑘 they are given by the equations 𝑤𝑘 = 𝑏𝑘 − 1/𝑤𝑘+1.
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where 𝐼𝑝(𝑁) = ∑min(𝜆, 𝜆′) where the sum varies over all 𝜆 totally
positive with 𝜆𝜆′ = 𝑁.

If furthermore 𝑣𝑝(𝑁) ≦ 𝑣𝑝(𝑀), then we have

(𝑇𝑁 .𝑇𝑀)∞ = ∑
𝑑|(𝑎,𝑏)

(𝑑𝜒𝑝(𝑑) + 𝑑𝜒𝑝(𝑁/𝑑)) 𝐼𝑝(𝑀𝑁/𝑑2).

Corollary 1. The intersection number of the cycles 𝑇𝑐
𝑁 are given by

(𝑇𝑐
𝑁 .𝑇𝑐

𝑀)𝑋 = 1
2 ∑

𝑑|(𝑀,𝑁)
(𝑑𝜒𝑝(𝑑) + 𝑑𝜒𝑝(𝑁/𝑑))(𝐻𝑝(𝑀𝑁/𝑑2) + 𝐼𝑝(𝑀𝑁/𝑑2))

where the functions 𝐻𝑝 and 𝐼𝑝 are as defined previsously.

5 The missing class 𝑇𝑐
0

Before we come back to the main theorem, we must define the last
cohomology class 𝑇𝑐

0 ∈ H2(𝑋). To do this we consider the “first Chern
form”

𝜔 = 𝑐1(𝑇𝑋) = −𝑐1(𝐾𝑋)

and the associated “Gauß-Bonnet form” 𝑐2 = 1
2𝑐2 ∧ 𝑐1.

Theorem 4 (Siegel). Let 𝑋′ be the smooth algebraic surface obtained
by removing from 𝑋 its singular points. Then the following period
evaluates to

∫
𝑋′

𝑐2 = 2𝜁𝐾(−1) = 1
60 ∑

1≦𝑏<√𝑑
𝑏=1 mod 2

𝜎1 (𝑑 − 𝑏2

4 ) > 0.

Hirzebruch has shown that 𝑐1 is cohomologous to a compact form
on 𝑋′, and hence we can consider the image

H2(𝑋′) → H2
𝑐(𝑋) ≅ H2(𝑋)

1
4𝑐1 ↦ 𝑇𝑐

0

Proposition 4. Let 𝑇𝑐
0 ∈ H2(𝑋) be as above. Then the form 𝑐1 restricts

to the invariant volume forms on the 𝑇𝑛. In particular,

𝑇𝑐
0𝑇𝑁 = 1

2vol(𝑇𝑁) = − 1
24 ∑

𝑑|𝑁
(𝜒𝑝(𝑑) + 𝜒𝑝(𝑁/𝑑)) 𝑑

and 𝑇𝑐
0𝑇𝑐

0 = 1
4𝜁𝐾(−1) > 0 by Siegel’s Theorem.
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6 Main Theorem
Let F∨ be the subspace of H2(𝑋) spanned by the 𝑇𝑐

𝑁 for all 𝑁 ≧ 0.
Let M be the space of modular forms for the group Γ0(𝑝) of weight
2, character 𝜒𝑝 and whose 𝑛’th Fourier coefficient vanishes as soon
as 𝜒𝑝(𝑛) = −1.

Theorem 5. For all 𝐾 in F∨ the function

Φ𝐾(𝜏) =
∞
∑
𝑁=0

𝑇𝑐
𝑁𝐾 𝑞𝑁 (𝑞 = exp(2𝜋𝑖𝜏), 𝜏 ∈ ℌ)

lies in M and 𝐾 ↦ Φ𝐾 determines an injection F∨ ↪ M.

Proof. The crux of the proof is the Hirzebruch-Zagier Theorem that

𝜙𝑝(𝜏) =
∞
∑
𝑁=0

(𝐻𝑝(𝑁) + 𝐼𝑝(𝑁)) 𝑞𝑁

lies in M. One then applies the Hecke operator to get 𝜙𝑝|𝑇(𝑀), which
is close to Φ𝑇𝑐

𝑁
but does not lie in M. Now there is a projection

operation

𝜋+ ∶ 𝑀2(Γ0(𝑝), 𝜒𝑝) → M

and 𝜋+(𝜙𝑝|𝑇(𝑀)) = Φ𝑇𝑐
𝑀

for 𝑀 > 0. The case 𝑁 = 0 is directly seen to
be

Φ𝑇𝑐
0

= − 1
24 (𝐸1 + 𝐸2)

where 𝐸𝑖 are the Hecke eigenforms (Eisenstein forms).
For injectivity, we must see that if 𝐾𝑇𝑐

𝑁 = 0 for all 𝑁 ≧ 0 then
𝐾 = 0 in H2(𝑋). This is a consequence of the Hodge Index Theorem
which says that the intersection pairing on algebraic cycles has
signature (1, 𝑛−1). Since (𝑇𝑐

0)2 > 0, we have that 𝑇𝑐
0𝐾 = 0, hence 𝐾 lies

in a subspace where the intersection form is negative definite. But
𝐾𝐾 = 0 and so 𝐾 = 0.

We also mention a bit on the history of the Theorem above and a
generalization. Namely, let H = H2(𝑋,C) one defines a subspace U of
H by the classes which

1. Are of type (1, 1),
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2. Are invariant under the involution of 𝑋,

3. Are orthogonal to the 𝑆𝑘,

4. Are in the kernel of the Hecke correspondence 𝔱𝔫 − 𝔱𝔫′

Theorem 6 (Zagier, Oda). The inclusion U ⊂ F is an equality and
Φ∶ U ∼

Ý→ H is an isomorphism.

The proof of this is done by the theory of Doi-Naganuma liftings
and is outside the scope of today’s lecture. However, we note that
what started this whole theory was the computation of Hirzebruch-
Zagier on the dimension of U, which was shown to be

dimU = [𝑝 − 5
24 ] + 1

and Serre noticed that it agreed with Hecke’s computation of dimH.
The Theorem above was conjectured by Hirzebruch-Zagier as “the only
reasonable way to explain this [coincidence]”.
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