On Hirzebruch-Zagier divisors

Thiago Solovera e Nery

This talk will start by fixing a prime p congruent to $1 \bmod 4$ and the subfield $\mathbf{Q}(\sqrt{p}) \subset \mathbf{R}$. Let $\omega=(1+\sqrt{p}) / 2$ and $\mathfrak{O}=\mathbf{Z}[\omega]$ the ring of integers of this number field. We denote by $\lambda \mapsto \lambda^{\prime}$ the conjugation in this real quadratic field and by χ_{p} the quadratic character associated to p.

Let Γ be the group $\mathrm{SL}_{2}(\mathfrak{D})$.

1 The Hilbert Modular Surface

The Hilbert modular surface (with respect to $\mathrm{SL}_{2}(\mathfrak{D})$ is defined to be the quotient

$$
Y=\mathfrak{H}^{2} / \mathrm{SL}_{2}(\mathfrak{O})
$$

of which we constructed a compactification $Y \subset X$ by adding cusps, and let $\widetilde{X} \rightarrow X$ be a resolution of the cusp singularities.

Thus \widetilde{X} contains X and the complement $\widetilde{X}-X$ consists of curves S_{k} in cyclic fashion (cf. Jie Lin's talk). This is not a smooth surface as X is still singular but its singularities are mild: they are isolated quotient singularities by cyclic groups (of orders 2, 3 or 5).

In particular \widetilde{X} and X are rational homology manifolds, (ie. for each point $x \in X$ the local rational homology groups $H_{x}^{i}(X)$ are 0 for $i \neq 4$ and \mathbf{Q} for $i=4$). And hence one can do intersection theory with rational coefficients: more precisely one proceeds naively but must divide by the order of the stabilizer at singular points.

Proposition 1. Let X, \widetilde{X} be as above. Then the pushforward in homology induces an orthogonal decomposition

$$
\mathrm{H}^{2}(\widetilde{X})=\mathrm{H}^{2}(X) \bigoplus \mathbf{Q}\left\langle S_{k}\right\rangle
$$

with respect to the intersection form.

Remark. Since $X \subset \widetilde{X}$ is open, the pushforward does not preserve the intersection product. However if T is a cycle in X then we can compactify it to obtain a cycle \bar{T} in $H^{2}(\widetilde{X})$ and T^{c} its projection on the first factor (ie. image of T in \widetilde{X}). Now write

$$
T^{c}=\bar{T}+\sum_{k} \alpha(T, k) S_{k}
$$

and we get that, if $(T . S)_{\infty}=(\bar{T} . \bar{S})_{\widetilde{X}-X}+\sum_{k} \alpha(T, k) \alpha(S, j)\left(S_{k} \cdot S_{j}\right)_{\widetilde{X}}$, that

$$
(T . S)_{X}=\left(T^{c} . S^{c}\right)_{\widetilde{X}}-(T . S)_{\infty} .
$$

Our goal is to sketch a proof of the following theorem by Hirzebruch-Zagier (1977):

Theorem 1. There exist certain specified cycles $T_{N} \in H_{2}(\widetilde{X})$ such that for each homology class K in $\mathrm{H}_{2}(X)$ in the subspace generated by the T_{N}^{c} the function

$$
\Phi_{K}(\tau)=\sum_{N=0}^{\infty}\left(T_{N}^{c} \cdot K\right)_{\widetilde{X}} q^{N} \quad(q=\exp (2 \pi i \tau), \tau \in \mathfrak{H})
$$

is a modular form of weight 2, level p and "Nebentypus" character χ_{p}, the Legendre symbol extended to \mathbf{Z}.

2 Hirzebruch-Zagier cycles

Consider the lattice \mathfrak{M} given by skew-hermitean matrices A in $M_{2}(\mathfrak{O})$, that is, with $A^{t}=-A^{\prime}$. Concretely, an element it is given by

$$
A=\left[\begin{array}{cc}
a \sqrt{p} & \lambda \\
-\lambda^{\prime} & b \sqrt{p}
\end{array}\right], \quad a, b \in \mathbf{Z}, \lambda \in \mathfrak{O} .
$$

If $A \in \mathfrak{M}$ we define the subvariety $F(A) \subset \mathfrak{H} \times \mathfrak{H}$ to be

$$
F(A)=V\left(A\left(z_{1}, z_{2}\right)\right)=V\left(a \sqrt{p} z_{1} z_{2}+\lambda z_{2}-\lambda^{\prime} z_{1}+b \sqrt{p}\right) .
$$

Here are some properties:
Lemma 1. If $F(A)$ is non-empty then $\operatorname{det} A=N=a b p+\lambda \lambda^{\prime}>0$. Furthermore, in that case $F(A)$ is the following graph

$$
F(A)=\{(z, I A z) \mid z \in \mathfrak{H}\} \subset \mathfrak{H} \times \mathfrak{H}
$$

of the fractional transformation defined by

$$
I A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right] \cdot A=\left[\begin{array}{cc}
\lambda^{\prime} & -b \sqrt{p} \\
a \sqrt{p} & \lambda
\end{array}\right]
$$

and $\operatorname{det} A=N$ is a quadratic residue modulo p (of couse, 0 is also allowed).

We define now for $N>0$ the divisors

$$
F_{N}=\sum_{\substack{\operatorname{det} A=n \\ A \text { primitive }}} F(A), \quad T_{n}=\sum_{\operatorname{det} A=n} F(A) .
$$

Which (we'll prove shortly) is Γ-equivariant and descends to a cycle in X. As happened before in the seminar (in the case " $p=1$ ") we have that

$$
T_{N}=\sum_{M^{2} \mid N} F_{N / M^{2}}
$$

and T_{N} intersects T_{M} transversely if and only if $M N$ is a square.
Remark. The cycle $T_{p n}$ admits the following moduli interpretation: it parametrizes polarized abelian surfaces (with real multiplication by Γ) that admit a special endomorphism.

Our first goal in the seminar is to compute the "away-from-cusps" part of the intersection, which we may do on X itself. For this we need to analyze the points in which T_{N} and T_{M} (equiv. F_{N} and F_{M}) meet.

Definition 1. Let $z=\left(z_{1}, z_{2}\right) \in \mathfrak{H} \times \mathfrak{H}$. We define

$$
\mathfrak{M}_{z}=\{A \in \mathfrak{M} \mid A(z)=0\}=\{A \mid z \in F(A)\} .
$$

Then $\mathfrak{M}_{z} \leqq \mathfrak{M}$ is a direct summand (hence a lattice) of rank 0,1 or 2. In the latter case, we say that z is special.

Proof. Notice that the quadratic form det: $\mathfrak{M} \rightarrow \mathbf{Z}$, ie.

$$
A \mapsto a b p+\lambda \lambda^{\prime}
$$

has sign (+,-,+,-) over the reals. Hence the statement about the rank follows from Sylvester's Law, since we mentioned that $\operatorname{det}(M)>0$ whenever $F(A)$ is non-empty.

Lemma 2. The group Γ acts on \mathfrak{M} via $A^{\gamma}=\gamma^{t} A \gamma^{\prime}$ which preserves the determinant. This action then satisfies

$$
A^{\gamma^{-1}}(z)=A(\gamma z), \quad F(A)=F\left(A^{\gamma^{-1}}\right)
$$

and hence T_{A} and F_{A} are Γ-invariants and

$$
()^{)^{\gamma^{-1}}}: \mathfrak{M}_{\gamma z} \xrightarrow{\sim} \mathfrak{M}_{z}
$$

is an isomorphism of oriented quadratic spaces.
Proof. It is a matter of matrix computations and going through the definitions, so we ommit it. Crucially, one uses that $I^{-1} \gamma I=\gamma^{-t}$.

In particular for each $\mathfrak{z} \in X$ one can talk about $\mathfrak{M}_{\mathfrak{z}}$ (up to isomorphism), of $\phi_{\mathfrak{z}}$ (up to equivalence), and whether \mathfrak{z} is a special point. There is a finite number of special points on X with a fixed form ϕ_{3}.

The cycles T_{N} admit some Shimura theoretic interpretation up to some branching. For example $X(1) \rightarrow F_{1}$ is a branched map. Assume that $\chi_{p}(N)=1$, on which case T_{N} non-empty. Write $N=N_{0} N_{1}$ where N_{i} is a product of primes q with $\chi_{p}(q)=i$. Then F_{N} is the branched image of \mathfrak{H} / Γ where Γ is the group of units in an order in some indefinite quaternion algebra (ramified at q_{i}). It is compact if and only if $r>0$.

3 The transverse intersection case

We can now say something about the intersection of the T_{N} and T_{M}. We compute first the contribution coming from the components of T_{N} and T_{M} meeting transversally (which amount to everything in case $N M$ is not a square).

Suppose that \mathfrak{z} is a point of X on which $F(A)$ and $F(B)$ meet. Then we have two vectors A, B on $\mathfrak{M}_{\mathfrak{z}}$ which are liniearly independent if $F(A)$ is not equal to $F(B)$, and hence \mathfrak{z} is special.

Proposition 2. The local transverse intersection number of T_{N} and T_{M} at a special point \mathfrak{z} is

$$
\left.\left.\left(T_{N} \cdot T_{M}\right)_{\mathfrak{z}}^{\operatorname{tr}}=\frac{1}{v_{\mathfrak{z}}} \right\rvert\,\left\{(A, B) \in \mathfrak{M}_{\mathfrak{z}}^{2} \mid \text { or. basis with } \phi_{\mathfrak{z}}(A)=N, \phi_{\mathfrak{z}}(B)=M\right\} \right\rvert\,
$$

where $v_{\mathfrak{z}}$ is the order of the centralizer of \mathfrak{z} in Γ. Putting it all together we have that the total transverse intersection number (that is, ignoring the common factors in the case $M N=\square$) we have

$$
\left(T_{N} \cdot T_{M}\right)_{X}^{\mathrm{tr}}=\sum_{\substack{b \in \mathbf{z} \\ b^{2}<4 M N \\ b^{2}=4 M N}} s_{0}(M, b, N),
$$

with $s_{0}(M, b, N)$ being the number of oriented bases (A, B) such that $\phi_{\mathfrak{z}}(m A, n B)=M m^{2}+b m n+N n^{2}$.
Proof (sketch). By the discussion above, the first statement follows. Each basis (A, B) then pulls back the determinant form to

$$
\phi_{\mathfrak{z}}(m A, b B)=M^{2} m+b m n+N n^{2}
$$

where b is to be determined. A computation shows that the quadratic form $\phi_{\mathfrak{z}}$ is pos. def. and has discriminant divisible by p, hence

$$
4 M N-b^{2}>0, \quad 4 M N-b^{2}=0 \quad \bmod p
$$

Further analysis shows that any such form is a sub quadratic space of $\mathfrak{M}_{\mathfrak{z}}$.

Theorem 2. Let M, N be positive integers with $v_{p}(N) \leqq v_{p}(M)$. Then the transverse intersection number of T_{M} and T_{N} is equal to

$$
\left(T_{N} \cdot T_{M}\right)_{X}^{\mathrm{tr}}=\frac{1}{2} \sum_{d \mid(M, N)}\left(d \chi_{p}(d)+d \chi_{p}(N / d)\right) H_{p}^{0}\left(M N / d^{2}\right)
$$

where $H_{p}^{0}(N)=\sum H\left(\frac{4 N-x^{2}}{p}\right)$, with the sum ranging over the integers x with $x^{2}<4 N$ and $x^{2}=4 N \bmod p$, and $H(k)$ the number of quadratic forms with fixed discriminant $-k$ (counted with multiplicity).

3.1 The self intersection

Very briefly, we mention that the self intersection of these divisors yields a similar formula, but we define $H_{p}(n)=H_{p}^{0}(n)$ if n is not a square and $H_{p}(\square)=H_{p}(0)-\frac{1}{6}$. Then

$$
\left(T_{N} \cdot T_{M}\right)_{X}=\frac{1}{2} \sum_{d \mid(M, N)}\left(d \chi_{p}(d)+d \chi_{p}(N / d)\right) H_{p}\left(M N / d^{2}\right)
$$

holds.
The proof is essentially the adjunction formula, execept that we have some mild singularities to take care of. Crucially, one uses that

$$
\operatorname{vol}\left(T_{N}\right)=\zeta(-1) \sum_{d \mid N}\left(d \chi_{p}(d)+d \chi_{p}(N / d)\right)
$$

4 Cusp contribution

As mentioned in the introduction we can write

$$
T_{N}^{c}=\bar{T}_{N}+\sum_{k} \alpha(N, k) S_{k} \in H_{2}(\widetilde{X})
$$

making T_{N}^{c} ortogonal to 0 . To explicitly compute the rational numbers $\alpha(N, k)$ we need to invert the matrix $\left(S_{i} \cdot S_{j}\right)_{\tilde{X}}$.
Proposition 3. The inverse of the matrix intersection matrix $\left(S_{i} . S_{j}\right)_{\widetilde{X}}$ is given by $\left(-f\left(\mathfrak{a}_{k} \mathfrak{a}_{l}^{\prime}\right)\right)$ with $f(\mathfrak{a})=0$ if \mathfrak{a} is not principal and

$$
f(\mathfrak{a})=\frac{1}{\sqrt{p}} \sum_{\substack{(\lambda)=\mathfrak{a} \\ \lambda \gg 0}} \min \left(\lambda, \lambda^{\prime}\right) .
$$

Here, $\mathfrak{a}_{k}^{-1}=w_{k} \mathbf{Z}+\mathbf{Z}$ and w_{k} is the quadratic irrationality associated with k as defined in last lecture ${ }^{1}$.

Remark. The fact that $f(\mathfrak{a})=0$ for non-principal ideals tells us that we may assume that the inverse matrix is a block matrix on each cycle, as expected.

Now put

$$
\left(\bar{T}_{N} \cdot \bar{T}_{M}\right)_{\infty}=\left(\bar{T}_{N} \cdot \bar{T}_{M}\right)_{\widetilde{X}-X}+\sum_{k, l} f\left(\mathfrak{a}_{k} \mathfrak{a}_{l}^{\prime}\right)\left(S_{k} \cdot \bar{T}_{M}\right)\left(S_{l} \cdot \bar{T}_{N}\right) .
$$

Theorem 3. The infinite part of the intersection multiplicity is given by

$$
\left(\bar{T}_{N} \cdot \bar{T}_{M}\right)_{\infty}=\sum_{\substack{N(\mathfrak{a})=N \\ N(\mathfrak{b})=M}} f\left(\mathfrak{a b} \mathfrak{b}^{\prime}\right)=\sum_{d \mid(a, b)} d \chi_{p}(d) I_{p}\left(M N / d^{2}\right) .
$$

[^0]where $I_{p}(N)=\sum \min \left(\lambda, \lambda^{\prime}\right)$ where the sum varies over all λ totally positive with $\lambda \lambda^{\prime}=N$.

If furthermore $v_{p}(N) \leqq v_{p}(M)$, then we have

$$
\left(\bar{T}_{N} \cdot \bar{T}_{M}\right)_{\infty}=\sum_{d \mid(a, b)}\left(d \chi_{p}(d)+d \chi_{p}(N / d)\right) I_{p}\left(M N / d^{2}\right) .
$$

Corollary 1. The intersection number of the cycles T_{N}^{c} are given by

$$
\left(T_{N}^{c} \cdot T_{M}^{c}\right)_{\widetilde{X}}=\frac{1}{2} \sum_{d \mid(M, N)}\left(d \chi_{p}(d)+d \chi_{p}(N / d)\right)\left(H_{p}\left(M N / d^{2}\right)+I_{p}\left(M N / d^{2}\right)\right)
$$

where the functions H_{p} and I_{p} are as defined previsously.

5 The missing class T_{0}^{c}

Before we come back to the main theorem, we must define the last cohomology class $T_{0}^{c} \in H_{2}(\widetilde{X})$. To do this we consider the "first Chern form"

$$
\omega=c_{1}\left(T_{X}\right)=-c_{1}\left(K_{X}\right)
$$

and the associated "Gauß-Bonnet form" $c_{2}=\frac{1}{2} c_{2} \wedge c_{1}$.
Theorem 4 (Siegel). Let X^{\prime} be the smooth algebraic surface obtained by removing from \widetilde{X} its singular points. Then the following period evaluates to

$$
\int_{X^{\prime}} c_{2}=2 \zeta_{K}(-1)=\frac{1}{60} \sum_{\substack{1 \leqq b<\sqrt{d} \\ b=\overline{1} \bmod 2}} \sigma_{1}\left(\frac{d-b^{2}}{4}\right)>0
$$

Hirzebruch has shown that c_{1} is cohomologous to a compact form on X^{\prime}, and hence we can consider the image

$$
\begin{gathered}
\mathrm{H}^{2}\left(X^{\prime}\right) \rightarrow \mathrm{H}_{c}^{2}(\widetilde{X}) \cong \mathrm{H}_{2}(\widetilde{X}) \\
\frac{1}{4} c_{1} \mapsto T_{0}^{c}
\end{gathered}
$$

Proposition 4. Let $T_{0}^{c} \in H_{2}(\widetilde{X})$ be as above. Then the form c_{1} restricts to the invariant volume forms on the T_{n}. In particular,

$$
T_{0}^{c} T_{N}=\frac{1}{2} \operatorname{vol}\left(T_{N}\right)=-\frac{1}{24} \sum_{d \mid N}\left(\chi_{p}(d)+\chi_{p}(N / d)\right) d
$$

and $T_{0}^{c} T_{0}^{c}=\frac{1}{4} \zeta_{K}(-1)>0$ by Siegel's Theorem.

6 Main Theorem

Let \mathbf{F}^{\vee} be the subspace of $H_{2}(\widetilde{X})$ spanned by the T_{N}^{c} for all $N \geqq 0$. Let \mathbf{M} be the space of modular forms for the group $\Gamma_{0}(p)$ of weight 2 , character χ_{p} and whose n 'th Fourier coefficient vanishes as soon as $\chi_{p}(n)=-1$.

Theorem 5. For all K in \mathbf{F}^{\vee} the function

$$
\Phi_{K}(\tau)=\sum_{N=0}^{\infty} T_{N}^{c} K q^{N} \quad(q=\exp (2 \pi i \tau), \tau \in \mathfrak{H})
$$

lies in \mathbf{M} and $K \mapsto \Phi_{K}$ determines an injection $\mathbf{F}^{\vee} \hookrightarrow \mathbf{M}$.
Proof. The crux of the proof is the Hirzebruch-Zagier Theorem that

$$
\phi_{p}(\tau)=\sum_{N=0}^{\infty}\left(H_{p}(N)+I_{p}(N)\right) q^{N}
$$

lies in M. One then applies the Hecke operator to get $\phi_{p} \mid T(M)$, which is close to $\Phi_{T_{N}^{c}}$ but does not lie in M. Now there is a projection operation

$$
\pi_{+}: M_{2}\left(\Gamma_{0}(p), \chi_{p}\right) \rightarrow \mathbf{M}
$$

and $\pi_{+}\left(\phi_{p} \mid T(M)\right)=\Phi_{T_{M}^{c}}$ for $M>0$. The case $N=0$ is directly seen to be

$$
\Phi_{T_{0}^{c}}=-\frac{1}{24}\left(E_{1}+E_{2}\right)
$$

where E_{i} are the Hecke eigenforms (Eisenstein forms).
For injectivity, we must see that if $K T_{N}^{c}=0$ for all $N \geqq 0$ then $K=0$ in $H_{2}(\widetilde{X})$. This is a consequence of the Hodge Index Theorem which says that the intersection pairing on algebraic cycles has signature $(1, n-1)$. Since $\left(T_{0}^{c}\right)^{2}>0$, we have that $T_{0}^{c} K=0$, hence K lies in a subspace where the intersection form is negative definite. But $K K=0$ and so $K=0$.

We also mention a bit on the history of the Theorem above and a generalization. Namely, let $\mathbf{H}=H^{2}(\widetilde{X}, \mathbf{C})$ one defines a subspace \mathbf{U} of H by the classes which

1. Are of type $(1,1)$,
2. Are invariant under the involution of \widetilde{X},
3. Are orthogonal to the S_{k},
4. Are in the kernel of the Hecke correspondence $\mathfrak{t}_{n}-\mathfrak{t}_{n^{\prime}}$

Theorem 6 (Zagier, Oda). The inclusion $\mathbf{U} \subset \mathbf{F}$ is an equality and $\Phi: \mathbf{U} \xrightarrow{\sim} \mathbf{H}$ is an isomorphism.

The proof of this is done by the theory of Doi-Naganuma liftings and is outside the scope of today's lecture. However, we note that what started this whole theory was the computation of HirzebruchZagier on the dimension of \mathbf{U}, which was shown to be

$$
\operatorname{dim} \mathbf{U}=\left[\frac{p-5}{24}\right]+1
$$

and Serre noticed that it agreed with Hecke's computation of dim. \mathbf{H}. The Theorem above was conjectured by Hirzebruch-Zagier as "the only reasonable way to explain this [coincidence]".

[^0]: ${ }^{1}$ In terms of the cycles S_{k} they are given by the equations $w_{k}=b_{k}-1 / w_{k+1}$.

